CRCC507: Signals and Systems
 Lecture Notes I: Signal Representation and Nodeling: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Mechatronics
Manara University

2023-2024

جَــامعة
 الـَمَـنارة
 Chapter 1
 Signal Representation and Modeling

1. Introduction
2. Signals and Systems
3. Mathematical Modeling of Signals
4. Continuous-Time Signals
5. Discrete-Time Signals
6. Introduction

- The broadcast example (a commentator in a radio broadcast studio) includes acoustic, electrical and electromagnetic signals.

2. Signals and Systems

- A signal is a function of one or more variables that conveys information about some (usually physical) phenomenon.
- independent variable = time, space, ...
- dependent variable = the function value itself.
- Some examples of signals include:
- a voltage or current in an electronic circuit.
- the position, velocity, or acceleration of an object.
- a force or torque in a mechanical system.
- a flow rate of a liquid or gas in a chemical process.
- a digital image, digital video, or digital audio.

جَــامعة
الـَمَـنارة

Classification of Signals

- Number of independent variables (dimensionality):
- A signal with one independent variable is said to be one dimensional (audio).
- A signal with more than one independent variable is said to be multidimensional (image).
- Continuous or discrete independent variables:
- A signal with continuous independent variables is said to be continuous time (CT) (voltage waveform). The signal is defined for all values of the independent variable t.
- A signal with discrete independent variables is said to be discrete time (DT) (stock market index). The signal is defined only at discrete values of time.
- Continuous or discrete dependent variable:
- A signal with a continuous dependent variable is said to be continuous valued (voltage). A continuous-valued CT signal is said to be analog.
- A signal with a discrete dependent variable is said to be discrete valued (digital image). A discrete-valued DT signal is said to be digital.
- Deterministic or random signals:
- A signal whose physical description is known completely, in either a mathematical form or a graphical form, is a deterministic signal.
- A signal whose values cannot be predicted precisely but are known only in terms of probabilistic description, such as mean value or mean-squared value, is a random signal.
- Periodic and Nonperiodic Signals
- A periodic signal is one that repeats itself. A CT signal $x(t)$ is said to be periodic with period T if $x(t)=x(t+T)$ for all t (where t is a real number). Likewise, a DT signal $x[n]$ is said to be periodic with period N if $x[n]=$ $x[n+N]$ for all n (where n is an integer).

Graphical Representation of Signals

- A system is an entity that processes one or more input signals in order to produce one or more output signals.

Classification of Systems

- Number of Inputs:
- A system with one input is said to be single input (SI).
- A system with more than one input is said to be multiple input (MI).
- Number of outputs:
- A system with one output is said to be single output (SO).
- A system with more than one output is said to be multiple output (MO).
- Types of signals processed: A system can be classified in terms of the types of signals that it processes:
- A system that deals with continuous-time signals is called a CT system.
- A system that deals with discrete-time signals is said to be a DT system.
- A system that handles both continuous- and discrete-time signals, is sometimes referred to as a hybrid system.
- A system that deal with digital signals are referred to as digital.
- A system that handle analog signals are referred to as analog.
- A system interacts with one dimensional signals, the system is referred to as one-dimensional.
- A system handles multi-dimensional signals, the system is said to be multidimensional.
- Causal and Noncausal Systems:
- A causal system is one whose present response does not depend on the future values of the input.
- Linear and Nonlinear Systems.
- Time-Varying and Time-Invariant Systems:
- A time-varying system is one whose parameters vary with time.
- In a time-invariant system, a time shift (advance or delay) in the input signal leads to the time shift in the output signal.
- Systems with and without Memory:
- A memoryless system (static system) is one in which the current output depends only on the current input; it does not depend on the past or future inputs.
- A system with memory (dynamic system) is one in which the current output depends on the past and/or future input.

Examples of Systems:

- One very basic system is the resistor-capacitor $(R C)$ network. Here, the input would be the source voltage v_{s} and the output would be the capacitor voltage v_{c}.

- Communication System
meresswertern

- Feedback Control System

- The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

3. Mathematical Modeling of Signals

- Understand the characteristics of the signal in terms of its behavior in time and in terms of the frequencies it contains (signal analysis).
- Develop methods of creating signals with desired characteristics (signal synthesis).
- Understand how a system responds to a signal and why (system analysis).
- Develop methods of constructing a system that responds to a signal in some prescribed way (system synthesis).
- The mathematical model for a signal is in the form of a formula, function, algorithm or a graph that approximately describes the time variations of the physical signal.

4. Continuous-Time Signals

- Consider $x(t)$, a mathematical function of time chosen to approximate the strength of the physical quantity at the time instant t.
- The signal $x(t)$, is referred to as a continuous-time signal or an analog signal. t is the independent variable, and x is the dependent variable.

- Some signals can be described analytically. For ex., the function $x(t)=5 \sin (12 t)$, or by segments as:

$$
x(t)= \begin{cases}e^{-3 t}-e^{-5 t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Signal operations

- Amplitude shifting maps the input signal x to the output signal g as given by $g(t)=x(t)+A$, where A is a real number.

- Amplitude scaling maps the input signal x to the output signal g as given by $g(t)=B x(t)$, where B is a real number.
- Geometrically, the output signal g is expanded/compressed in amplitude.

- Addition and Multiplication of two signals Addition of two signals is accomplished by adding the amplitudes of the two signals at each time instant. $g(t)=x_{1}(t)+x_{2}(t)$.

Multiplication of two signals is accomplished by multiplying the amplitudes of the two signals at each time instant. $g(t)=x_{1}(t) \cdot x_{2}(t)$.

- Time shifting (also called translation) maps the input signal x to the output signal g as given by: $g(t)=x\left(t-t_{d}\right)$; where t_{d} is a real number.
- Such a transformation shifts the signal (to the left or right) along the time axis.
- If $t_{d}>0, g$ is shifted to the right by $\left|t_{d}\right|$, relative to x (i.e., delayed in time).
- If $t_{d}<0, g$ is shifted to the left by $\left|t_{d}\right|$, relative to x (i.e., advanced in time).

- Time scaling (also called dilation) maps the input signal x to the output signal g as given by: $g(t)=x(a t)$; where a is a strictly positive real number.
- Such a transformation is associated with a compression/expansion along the time axis.
- If $a>1, g$ is compressed along the horizontal axis by a factor of a, relative to x.
- If $a<1, g$ is expanded (stretched) along the horizontal axis by a factor of $1 / a$, relative to x.

- Time reversal (also known as reflection) maps the input signal x to the output signal g as given by $g(t)=x(-t)$.
- Geometrically, the output signal g is a reflection of the input signal x about the (vertical) line $t=0$.

- Integration and differentiation

Given a continuous-time signal $x(t)$, a new signal $g(t)$ may be defined as its time derivative in the form: $g(t)=d x(t) / d t$. Similarly, a signal can be defined as the integral of another signal in the form: $g(t)=\int_{-\infty}^{t} x(\tau) d \tau$

$i_{L}(t)=\frac{1}{L} \int_{-\infty}^{t} v_{L}(\tau) d \tau$

ideal inductor

- Sum of periodic signals

For two periodic signals x_{1} and x_{2} with fundamental periods T_{1} and T_{2}, respectively, and the sum $y=x_{1}+x_{2}$:

- The sum y is periodic if and only if the ratio T_{1} / T_{2} is a rational number (i.e., the quotient of two integers).
- If y is periodic, its fundamental period is $r T_{1}$ (or equivalently, $q T_{2}$, since $r T_{1}$ $=q T_{2}$), where $T_{1} / T_{2}=q / r$ and q and r are integers and coprime (i.e., have no common factors). (Note that $r T_{1}$ is simply the least common multiple of T_{1} and T_{2}).

Basic building blocks for continuous-time signals

Unit-impulse function

- The unit-impulse function (Dirac delta function or delta function), denoted δ, is defined by:

$$
\delta(t)=\left\{\begin{array}{ll}
0, & \text { if } t \neq 0 \\
\text { undefined, } & \text { if } t=0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(t) d t=1\right.
$$

- Technically, δ is not a function in the ordinary sense. Rather, it is what is known as a generalized function.

- Define $q(t)= \begin{cases}1 / a, & |t|<a / 2 \\ 0, & |t|>a / 2\end{cases}$
- Clearly, for any choice of $a, \int_{-\infty}^{\infty} q(t) d t=1$
- The function δ can be obtained as the following limit: $\delta(t)=\lim _{a \rightarrow 0} q(t)$

- Sampling property. For any continuous function f and any real constant t_{1}, $f(t) \delta\left(t-t_{1}\right)=f\left(t_{1}\right) \delta\left(t-t_{1}\right)$.
- Sifting property. For any continuous function f and any real constant t_{1} :

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{1}\right) d t=f\left(t_{1}\right)
$$

Unit-Step Function

- The unit-step function (also known as the Heaviside function), denoted u, is defined as:

$$
u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

- A time shifted version of the unit-step function:

$$
u\left(t-t_{1}\right)= \begin{cases}1, & t \geq t_{1} \\ 0, & t<t_{1}\end{cases}
$$

- Signals begin at $t=0$ (causal signals) can be described in terms of $u(t)$.
- Using the unit-step function to turn a signal on/off at a specified time instant:

$$
x(t) u\left(t-t_{1}\right)=\left\{\begin{array}{ll}
\sin \left(2 \pi f_{0} t\right), & t \geq t_{1} \\
0, & t<t_{1}
\end{array} \quad x(t) u\left(-t+t_{1}\right)= \begin{cases}\sin \left(2 \pi f_{0} t\right), & t \leq t_{1} \\
0, & t>t_{1}\end{cases}\right.
$$

- The Relationship between the unit-step function and the unit-impulse function:

$$
\delta(t)=\frac{d u(t)}{d t} \quad u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau
$$

Signum Function

- The signum function, denoted sgn, is defined as:

$$
\operatorname{sgn} t=\left\{\begin{array}{cc}
1 & \text { if } t>0 \\
0 & \text { if } t=0 \\
-1 & \text { if } t<0
\end{array}\right.
$$

- From its definition, one can see that the signum function simply computes the sign of a number.

Unit-pulse function

- The unit-pulse function (also called the unit-rectangular pulse function), denoted rect, is given by:

$$
\operatorname{rect} t=\Pi(t)= \begin{cases}1, & \text { if }-\frac{1}{2}<t<\frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

- Due to the manner in which the rect function is used in practice, the actual value of rect t at $t= \pm 1 / 2$ is unimportant. Sometimes \neq values are used.

- Constructing a unit-pulse function from unit-step functions:

$$
\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)
$$

Unit-Ramp Function

- The unit-ramp function, denoted r, is defined as:

$$
r(t)= \begin{cases}t, & \text { if } t \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

or, equivalently: $r(t)=t u(t)$.

- Constructing a unit-ramp function from a unit-step:

$$
r(t)=\int_{-\infty}^{t} u(\tau) d \tau
$$

Unit Triangular Function

- The unit triangular function (unit-triangular pulse function), denoted tri, is defined as:

$$
\operatorname{tri} t=\Lambda(t)= \begin{cases}1-|t|, & \text { if }|t| \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- Constructing a unit-triangle using unit-ramp functions:

$$
\Lambda(t)=r(t+1)-2 r(t)+r(t-1)
$$

Cardinal Sine Function

- The cardinal sine function, denoted sinc, is given by $\operatorname{sinc} t=\frac{\sin (\pi t)}{\pi t}$

Sinusoidal Signal

- A real sinusoidal function is a function of the form:

$$
x(t)=A \cos \left(\omega_{0} t+\theta\right)
$$

where A is the amplitude of the signal, ω_{0} is the radian frequency (rad/s), and θ is the initial phase angle (rad), all are real constants.
$\omega_{0}=2 \pi f_{0}$ where f_{0} is the frequency $(\mathrm{Hz}), T_{0}=1 / f_{0}$ is the period (s).

Complex Exponential Function

- A complex exponential function is a function of the form $x(t)=A e^{\lambda t}$, where A and λ are complex constants.
- A complex exponential can exhibit one of a number of distinct modes of behavior, depending on the values of A and λ.
- For example, as special cases, complex exponentials include real exponentials and complex sinusoids.
- A real exponential function is a special case of a complex exponential $x(t)=A e^{\lambda t}$, where A and λ are restricted to be real numbers.
- A real exponential can exhibit one of three distinct modes of behavior, depending on the value of λ, as illustrated below.
- If $\lambda>0, x(t)$ increases exponentially as t increases (growing exponential).
- If $\lambda<0, x(t)$ decreases exponentially as t increases (decaying exponential).
- If $\lambda=0, x(t)$ simply equals the constant A.

Complex Sinusoidal Function

- A complex sinusoidal function is a special case of a complex exponential $x(t)=A e^{\lambda t}$, where A is complex and λ is purely imaginary (i.e., $\operatorname{Re}\{\lambda\}=0$).
- That is, a complex sinusoidal function is a function of the form $x(t)=A e^{j \omega t}$, where A is complex and ω is real.
- By expressing A in polar form as $A=|A| e^{j \theta}$ (where θ is real) and using Euler's relation, we can rewrite $x(t)$ as:

$$
x(t)=\underbrace{|A| \cos (\omega t+\theta)}_{\operatorname{Re}\{x(t)\}}+j \underbrace{|A| \sin (\omega t+\theta)}_{\operatorname{Im}\{x(t)\}}
$$

- Thus, $\operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ are the same except for a time shift.
- Also, x is periodic with fundamental period $T=2 \pi /|\omega|$ and fundamental frequency $|\omega|$.

- In the most general case of a complex exponential function $x(t)=A e^{\lambda t}, A$ and λ are both complex.
- Letting $A=|A| e^{j \theta}$ and $\lambda=\sigma+j \omega$ (where θ, σ, and ω are real), and using Euler's relation, we can rewrite $x(t)$ as:

$$
x(t)=\underbrace{|A| e^{\sigma t} \cos (\omega t+\theta)}_{\operatorname{Re}\{x(t)\}}+j \underbrace{|A| e^{\sigma t} \sin (\omega t+\theta)}_{\operatorname{Im}\{x(t)\}}
$$

- One of three distinct modes of behavior is exhibited by $x(t)$, depending on the value of σ.
- If $\sigma=0, \operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ are real sinusoids.
- If $\sigma>0, \operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ are each the product of a real sinusoid and a growing real exponential.
- If $\sigma<0, \operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ are each the product of a real sinusoid and a decaying real exponential.

$\sigma>0$

$\sigma=0$

$\sigma<0$
- From Euler's relation, a complex sinusoid can be expressed as the sum of two real sinusoids as:

$$
A e^{j \omega t}=A \cos (\omega t)+j A \sin (\omega t)
$$

- Moreover, a real sinusoid can be expressed as the sum of two complex sinusoids using the identities:

$$
\begin{gathered}
A \cos (\omega t+\theta)=\frac{A}{2}\left[e^{j(\omega t+\theta)}+e^{-j(\omega t+\theta)}\right] \quad \text { and } \\
A \sin (\omega t+\theta)=\frac{A}{2 j}\left[e^{j(\omega t+\theta)}-e^{-j(\omega t+\theta)}\right]
\end{gathered}
$$

