CHCCCI22: Linear Algebra and Natrix Theory

Lecture Notes l: Systems of Linear Equations

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
1.1 Introduction to Systems of Linear Equations
1.2 Gaussian Elimination and Gauss-Jordan Elimination
1.3 Applications of Systems of Linear Equations

1.1 Introduction to Systems of Linear Equations

- A linear equation in n variables: $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$
$a_{1}, a_{2}, \ldots, a_{n}, b$: real numbers
a_{1} : leading coefficient
x_{1} : leading variable
- Notes:
(1) Linear equations have no products or roots of variables and no variables involved in trigonometric, exponential, or logarithmic functions.
(2) Variables appear only to the first power.
- Ex 1: (Linear or Nonlinear)

Linear $\quad(a) 3 x+2 y=7$
(b) $\frac{1}{2} x+y-\pi z=\sqrt{2} \quad$ Linear

Linear (c) $x_{1}-2 x_{2}+10 x_{3}+x_{4}=0$
(d) $\left(\sin \frac{\pi}{2}\right) x_{1}-4 x_{2}=e^{2} \quad$ Linear

NonLinear $(e) x y+z=2$
(f) $e^{\text {ex }}-2 y=4$

NonLinear

Products

| NonLinear $(g) \sin x_{1}+2 x_{2}-3 x_{3}=0$ | $(h)\left(\frac{1}{x}\right)+\left(\frac{1}{y}\right)=4$ |
| :---: | :---: | NonLinear

- A solution of a linear equation in n variables:

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \\
& x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n} \quad \text { such that: } a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{n} s_{n}=b
\end{aligned}
$$

- Solution set: the set of all solutions of a linear equation
- Ex 2: (Parametric representation of a solution set)

$$
x_{1}+2 x_{2}=4 \quad(2,1) \text { is a solution, i.e. } x_{1}=2, x_{2}=1
$$

If you solve for x_{1} in terms of x_{2}, you obtain $x_{1}=4-2 x_{2}$
By letting $x_{2}=t$ you can represent the solution set as $x_{1}=4-2 t$
And the solutions are $\{(4-2 t, t) \mid t \in R\}$ or $\{(s, 2-1 / 2 s) \mid s \in R\}$
In vector form: $\left(x_{1}, x_{2}\right)=(4,0)+t(-2,1)=(0,2)+s(1,-1 / 2)$

جَــامعة
الْمَـنارة

- A system of m linear equations in n variables:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

- Consistent: A system of linear equations has at least one solution.
- Inconsistent: A system of linear equations has no solution.
- Notes: Every system of linear equations has either
(1) exactly one solution,
(2) infinitely many solutions, or
(3) no solution.
- Ex 3: (Solution of a system of linear equations)

$$
\begin{array}{ccccc}
x+y=3 & x+y=3 & x+y=3 \\
x-y=-1 & 2 x+2 y=6 & x+y=1 \\
\text { two intersecting lines } & \text { two coincident lines } & \text { two parallel lines }
\end{array}
$$

exactly one solution

infinite number

no solution

- Ex 4: (Using back substitution to solve a system in row echelon form)

$$
\begin{align*}
x-2 y & =5 \tag{1}\\
y & =-2 \tag{2}
\end{align*}
$$

Sol: By substituting $y=-2$ into (1), you obtain

$$
\begin{aligned}
x-2(-2) & =5 \\
x & =1
\end{aligned}
$$

The system has exactly one solution: $x=1, y=-2$

- Ex 5: (Using back substitution to solve a system in row echelon form)

$$
\begin{align*}
x-2 y+3 z & =9 \tag{1}\\
y+3 z & =5 \tag{2}\\
z & =2 \tag{3}
\end{align*}
$$

Sol: Substitute $z=2$ into (2)

$$
\begin{aligned}
y+3(2) & =5 \\
y & =-1
\end{aligned}
$$

and substitute $y=-1$ and $z=2$ into (1)

$$
\begin{aligned}
x-2(-1)+3(2) & =9 \\
x & =1
\end{aligned}
$$

The system has exactly one solution: $x=1, y=-1, z=2$

- Equivalent:

Two systems of linear equations are called equivalent if they have precisely the same solution set

- Notes: Each of the following operations on a system of linear equations produces an equivalent system.
(1) Interchange two equations.
(2) Multiply an equation by a nonzero constant.
(3) Add a multiple of an equation to another equation.
- Ex 6: Solve a system of linear equations (consistent system)

$$
\begin{align*}
x-2 y+3 z & =9 \tag{1}\\
-x+3 y & =-4 \tag{2}\\
2 x-5 y+5 z & =17 \tag{3}
\end{align*}
$$

Sol:

$$
\begin{align*}
&(1)+(2) \rightarrow(2) \\
& x-2 y+3 z= 9 \\
& y+3 z= 5 \tag{4}\\
& 2 x-5 y+5 z= 17 \\
&(1) \times(-2)+(3) \rightarrow(3) \\
& x-2 y+3 z= 9 \\
& y+3 z=5 \\
&-y-z=-1 \tag{5}\\
&(4)+(5) \rightarrow(5) \\
& x-2 y+3 z= 9 \\
& y+3 z=5 \\
& 2 z=4 \tag{6}
\end{align*}
$$

$$
\begin{aligned}
&(6) \times \frac{1}{2} \rightarrow(6) \\
& x-2 y+3 z=9 \\
& y+3 z=5 \\
& z=2
\end{aligned} \quad \text { So the solution is: } x=1, y=-1, z=2
$$

- Ex 7: Solve a system of linear equations (inconsistent system)

$$
\begin{align*}
x_{1}-3 x_{2}+x_{3}=1 \tag{1}\\
2 x_{1}-x_{2}-2 x_{3}=2 \tag{2}\\
x_{1}+2 x_{2}-3 x_{3}=-1 \tag{3}
\end{align*}
$$

Sol: $(1) \times(-2)+(2) \rightarrow(2)$
$(1) \times(-1)+(3) \rightarrow(3)$

$$
\begin{align*}
x_{1}-3 x_{2}+x_{3} & =1 \\
5 x_{2}-4 x_{3} & =0 \tag{4}\\
5 x_{2}-4 x_{3} & =-2 \tag{5}
\end{align*}
$$

$(4) \times(-1)+(5) \rightarrow(5)$
$x_{1}-3 x_{2}+x_{3}=1$
$5 x_{2}-4 x_{3}=0$

$$
\begin{array}{|l|l|}
\hline 0 & =-2 \\
\text { (a false statement) }
\end{array}
$$

- Ex 8: Solve a system of linear equations (infinitely many solutions)

$$
\begin{align*}
x_{2}-x_{3} & =0 \tag{1}\\
-3 x_{3} & =-1 \tag{2}\\
x_{1} & =1 \tag{3}
\end{align*}
$$

Sol: $(1) \leftrightarrow(2)$

$$
\begin{align*}
x_{1}-3 x_{3} & =-1 \tag{1}\\
x_{2}-x_{3} & =0 \tag{2}\\
-x_{1}+3 x_{2} & =1 \tag{3}
\end{align*}
$$

$$
\begin{align*}
&(1)+(3) \rightarrow(3) \\
& x_{1}-3 x_{3}=-1 \\
& x_{2}-x_{3}=0 \\
& 3 x_{2}-3 x_{3}=0 \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \begin{aligned}
&(2) \times(-3)+(4) \rightarrow(4) \\
& x_{1}-3 x_{3}=-1 \\
& x_{2}-x_{3}=0 \\
& 0=0 \\
& \Rightarrow \text { (a True statement) } \\
& \Rightarrow x_{2}=x_{3}, \quad x_{1}=-1+3 x_{3}
\end{aligned}
\end{aligned}
$$

letting $x_{3}=t$, then the solutions are: $\{(3 t-1, t, t) \mid t \in R\}$

1.2 Gaussian Elimination and Gauss-Jordan Elimination

- $m \times n$ matrix:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] m \text { rows }
$$

- Notes:
n columns
(1) Every entry $a_{i j}$ in a matrix is a number.
(2) A matrix with m rows and n columns is said to be of size $m \times n$.
(3) If $m=n$, then the matrix is called square of order n.
(4) For a square matrix, $a_{11}, a_{22}, \ldots, a_{n n}$ are called the main diagonal entries.
- Ex 1: Matrix
[2]

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & -3 & 0 & \frac{1}{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
e & \pi \\
2 & \sqrt{2} \\
-7 & 4
\end{array}\right]
$$

1×1
2×2

$$
1 \times 4
$$

$$
3 \times 2
$$

- Note: One very common use of matrices is to represent a system of linear equations.
- A system of m equations in n variables:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots
\end{aligned}
$$

Matrix form: $\boldsymbol{A x}=\boldsymbol{b}$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

- Augmented matrix:

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
& \vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]=[A \mid \boldsymbol{b}]
$$

- Coefficient matrix:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=A
$$

- Elementary row operation:
(1) Interchange two rows.
(2) Multiply a row by a nonzero constant.
(3) Add a multiple of a row to another row.

$$
\begin{aligned}
& r_{i j}: R_{i} \leftrightarrow R_{j} \\
& r_{i}^{(k)}:(k) R_{i} \rightarrow R_{i} \\
& r_{i j}^{(k)}:(k) R_{i}+R_{j} \rightarrow R_{j}
\end{aligned}
$$

- Row equivalent: Two matrices are said to be row equivalent if one can be obtained from the other by a finite sequence of elementary row operation.
- Ex 2: (Elementary row operation)

$$
\begin{array}{ll}
{\left[\begin{array}{rrrr}
0 & 1 & 3 & 4 \\
-1 & 2 & 0 & 3 \\
2 & -3 & 4 & 1
\end{array}\right]} & \xrightarrow{r_{12}}\left[\begin{array}{|rrrr}
{\left[\begin{array}{rrrr}
-1 & 2 & 0 & 3 \\
0 & 1 & 3 & 4 \\
2 & -3 & 4 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrrr}
2 & -4 & 6 & -2 \\
1 & 3 & -3 & 0 \\
5 & -2 & 1 & 2
\end{array}\right]} & \xrightarrow{r_{1}^{\left(\frac{1}{2}\right)}}\left[\begin{array}{|rrrr}
1 & -2 & 3 & -1 \\
1 & 3 & -3 & 0 \\
5 & -2 & 1 & 2
\end{array}\right] \\
{\left[\begin{array}{rrrr}
1 & 2 & -4 & 3 \\
0 & 3 & -2 & -1 \\
2 & 1 & 5 & -2
\end{array}\right]} & \xrightarrow{r_{13}^{(-2)}} & {\left[\begin{array}{rrrr}
1 & 2 & -4 & 3 \\
0 & 3 & -2 & -1 \\
0 & -3 & 13 & -8
\end{array}\right]}
\end{array}\right.
\end{array}
$$

- Ex 3: Using elementary row operations to solve a system

Linear System

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17 \\
x-2 y+3 z & =9 \\
y+3 z & =5 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

$$
x-2 y+3 z=9
$$

$$
y+3 z=5
$$

$$
-y-z=-1
$$

Augmented Matrix

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
-1 & 3 & 0 & -4 \\
2 & -5 & 5 & 17
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
2 & -5 & 5 & 17
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & -1 & -1 & -1
\end{array}\right]
$$

Elementary

 Row Operation$$
r_{12}^{(1)}:(1) R_{1}+R_{2} \rightarrow R_{2}
$$

$$
r_{13}^{(-2)}:(-2) R_{1}+R_{3} \rightarrow R_{3}
$$

Linear System

$$
\begin{array}{r}
x-2 y+3 z=9 \\
y+3 z=5 \\
2 z=4
\end{array}
$$

$$
x-2 y+3 z=9
$$

$$
y+3 z=5
$$

$$
z=2
$$

$$
\begin{array}{rlr}
x & & =1 \\
y & = & -1 \\
z & =2
\end{array}
$$

Associated
Augmented Matrix

$$
\begin{array}{ll}
\text { ssociated } \\
\text { ugmented Matrix }
\end{array} \quad \begin{gathered}
\begin{array}{l}
\text { Elementary } \\
\text { Row Operation }
\end{array} \\
{\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & 0 & 2 & 4
\end{array}\right]}
\end{gathered} r_{23}^{(1)}:(1) R_{2}+R_{3} \rightarrow R_{3} .
$$

- Row-echelon form: $(1,2,3)$
- Reduced row-echelon form: $(1,2,3,4)$
(1) All row consisting entirely of zeros occur at the bottom of the matrix.
(2) For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a leading 1).
(3) For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.
(4) Every column that has a leading 1 has zeros in every position above and below its leading 1.
- Notes:
(1) Each column of the coefficient matrix corresponds to a variable in the system of equations, we call each variable associated to a leading 1 in the RREF a leading variable.
(2) A variable (if any) that is not a leading variable is called a free variable.
- Ex 4:

$$
\begin{array}{r}
x_{1}-2 x_{2}-x_{3}+3 x_{4}=1 \\
2 x_{2}-4 x_{3}+x_{4}=5 \\
x_{1}-2 x_{2}+2 x_{3}-3 x_{4}=4
\end{array} \Rightarrow\left[\begin{array}{rrrr|r}
1 & -2 & 0 & 1 & 2 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

x_{1}, x_{3} are leading variables and x_{2}, x_{4} are free variables

- Ex 5: (Row-echelon form or reduced row-echelon form)

$$
\left[\begin{array}{llrr}
1 & 2 & -1 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -2
\end{array}\right] \text { row-echelon form }
$$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr}
1 & -5 & 2 & -1 & 3 \\
0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text { row-echelon form }
$$

$$
\left[\begin{array}{|cccr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \text { reduced row- }
$$

$\left[\begin{array}{rrrr}1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3\end{array}\right]$
$\left[\begin{array}{rrrr}1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4\end{array}\right]$

- Gaussian elimination:

The procedure for reducing a matrix to a row-echelon form.

- Gauss-Jordan elimination:

The procedure for reducing a matrix to a reduced row-echelon form.

- Notes:
(1) Every matrix has an unique reduced row echelon form.
(2) A row-echelon form of a given matrix is not unique.
(Different sequences of row operations can produce different row-echelon forms.)
- Ex 6: Solve a system by Gauss-Jordan elimination method (one solution)

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

Sol:

الـمــارة

augmented matrix

$$
2 x-5 y+5 z=17
$$

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
-1 & 3 & 0 & -4 \\
2 & -5 & 5 & 17
\end{array}\right] \xrightarrow{r_{12}^{(1)}, r_{13}^{(-2)}}\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & -1 & -1 & -1
\end{array}\right] \xrightarrow{r_{23}^{(1)}}\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & 0 & 2 & 4
\end{array}\right]
$$

$$
\xrightarrow{r_{3}^{\left(\frac{1}{2}\right)}}\left[\begin{array}{rrrr}
1 & -2 & 3 & 9 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{r_{31}^{(-3)}, r_{32}^{(-3)}, r_{21}^{(2)}}\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] \longrightarrow \begin{array}{r}
x \\
y
\end{array}
$$

row-echelon form

حَـامعة
الْمَـنارة

- Ex 7: Solve a system by G.J. elimination method (infinitely many solutions)

$$
\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3} & =0 \\
3 x_{1}+5 x_{2} & =1
\end{aligned}
$$

Sol:

> augmented matrix

$$
\left[\begin{array}{rrrr}
2 & 4 & -2 & 0 \\
3 & 5 & 0 & 1
\end{array}\right] \xrightarrow{r_{1}^{\left(\frac{1}{2}\right)}, r_{12}^{(-3)}, r_{2}^{(-1)}, r_{21}^{(-2)}}\left[\begin{array}{rrrr}
1 & 0 & 5 & 2 \\
0 & 1 & -3 & -1
\end{array}\right]
$$

reduced row-echelon form

$$
\longrightarrow \begin{aligned}
& x_{1}{ }^{+} \begin{array}{r}
5 x_{3}= \\
x_{2}
\end{array} \quad \begin{array}{r}
\text { leading variables: } \\
-3 x_{3}=
\end{array} x_{1}, x_{2} \\
& \text { free variable: }
\end{aligned} x_{3}
$$

$$
x_{1}=2-5 x_{3} \quad x_{3}=t, \text { then the solutions are: }\{(2-5 t,-1+3 t, t) \mid t \in R\}
$$

$$
x_{2}=-1+3 x_{3} \quad \text { So the system has infinitely many solutions. }
$$

- Ex 8: Solve a system by Gauss-Jordan elimination method (no solution)

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =4 \\
x_{1} & +x_{3}=6 \\
2 x_{1}-3 x_{2}+5 x_{3} & =4 \\
3 x_{1}+2 x_{2}-x_{3} & =1
\end{aligned}
$$

Sol:

> augmented matrix

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & 4 \\
1 & 0 & 1 & 6 \\
2 & -3 & 5 & 4 \\
3 & 2 & -1 & 1
\end{array}\right] \xrightarrow{r_{12}^{(-1)}, r_{13}^{(-2)}, r_{14}^{(-3)}, r_{23}^{(1)}}\left[\begin{array}{rrrr}
1 & -1 & 2 & 4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & -2 \\
0 & 5 & -7 & -11
\end{array}\right]
$$

$$
\longrightarrow \begin{aligned}
x_{1}-x_{2}+2 x_{3} & =4 \\
x_{2}-x_{3} & =2 \\
0 & =-2 \\
5 x_{2}-7 x_{3} & =-11
\end{aligned}
$$

Because the third equation is not possible, the system has no solution.

- Homogeneous systems of linear equations:

A system of linear equations is said to be homogeneous if all the constant terms are zero.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}= \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}= \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0 \\
& 0
\end{aligned}
$$

- Trivial solution: $x_{1}=x_{2}=\cdots=x_{n}=0$
- Nontrivial solution: other solutions
- Notes:
(1) Every homogeneous system of linear equations is consistent.
(2) If the homogenous system has fewer equations than variables, then it must have an infinite number of solutions.
(3) For a homogeneous system, exactly one of the following is true.
(a) The system has only the trivial solution.
(b) The system has infinitely many nontrivial solutions in addition to the trivial solution.
- Ex 9: Solve the following homogeneous system

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}=0 \\
2 x_{1}-x_{2}+3 x_{3}=0
\end{array}
$$

Sol:

$$
\begin{aligned}
& \text { augmented matrix } \\
& {\left[\begin{array}{rrrr}
1 & 1 & 3 & 0 \\
2 & -1 & 3 & 0
\end{array}\right] \xrightarrow{r_{12}^{(-2)}, r_{2}^{\left(-\frac{1}{3}\right)}, r_{21}^{(-1)}}\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]}
\end{aligned} \rightarrow \begin{aligned}
& x_{1} \begin{array}{r}
+2 x_{3}= \\
x_{2}+ \\
x_{3}
\end{array}=0
\end{aligned}
$$

leading variables: x_{1}, x_{2} free variable: $\quad x_{3}$
letting $x_{3}=t$, then the solutions are:

$$
\{(-2 t,-t, t) \mid t \in R\}
$$

When $t=0, x_{1}=x_{2}=x_{3}=0$ (trivial solution)

- The Number of Solutions of a Homogeneous System

Every homogeneous system of linear equations is consistent. Moreover, if the system has fewer equations than variables, then it must have infinitely many solutions.

1.3 Applications of Systems of Linear Equations

- Polynomial Curve Fitting

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \\
& p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \\
& a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{n-1} x_{1}^{n-1}=y_{1} \\
& a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{n-1} x_{2}^{n-1}=y_{2} \\
& a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\cdots+a_{n-1} x_{n}^{n-1}=y_{n}
\end{aligned}
$$

- Ex 1: (Polynomial Curve Fitting)

Find a polynomial that fits the points: $(-2,3),(-1,5),(0,1),(1,4)$, and $(2,10)$

Sol:

$$
\begin{aligned}
& p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \\
& \begin{array}{r}
a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4}=3 \\
a_{0}-a_{1}+a_{2}-a_{3}+a_{4}=5 \\
a_{0}=1 \\
a_{0}+a_{1}+a_{2}+a_{3}+a_{4}=4 \\
a_{0}+2 a_{1}+4 a_{2}+8 a_{3}+16 a_{4}=10
\end{array} \\
& a_{0}=1, a_{1}=-\frac{5}{4}, a_{2}=\frac{101}{24}, a_{3}=\frac{3}{4}, a_{4}=-\frac{17}{24} \\
& \Rightarrow p(x)=1-\frac{5}{4} x+\frac{101}{24} x^{2}+\frac{3}{4} x^{3}-\frac{17}{24} x^{4}
\end{aligned}
$$

- Analysis of an Electrical Network

Ohm's Law: The current I and the voltage drop V across a resistance R are related by the equation $V=R I$

Kirchhoff's Laws:

1. (Junction Rule) The current flow into a junction equals the current flow out of that junction.
2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around any closed circuit of the network must equal the sum of the voltage increases around the circuit

- Ex 2: (Analysis of an Electrical Network)

Determine the currents $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$, and I_{6} for the electrical network:

$$
\begin{aligned}
& I_{1}-I_{2}+I_{3}=0 \\
& I_{1}-I_{2}+I_{4}=0 \\
& I_{3}-I_{5}+I_{6}=0 \\
& 2 I_{1}+4 I_{2} \\
& 4 I_{2}+I_{3}+2 I_{4}+2 I_{5}=17 \\
& 2 I_{5}+4 I_{6}=14
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4} \\
I_{5} \\
I_{5} \\
I_{6}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
3 \\
2
\end{array}\right]
$$

