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4.5 Basis and Dimension

◼ Basis:

V: a vector space  S ={v1, v2, …, vn}V

(a) S spans V  (i.e.,  span(S) = V)

(b) S is linearly independent Generating

Sets
Basis

Linearly

Independent

Sets S is called a basis for V

◼ Notes:

(1) Ø is a basis for {0}

(2) the standard basis for R3:

{i, j, k}    i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)
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(3) the standard basis for Rn 
:

{e1, e2, …, en}    e1 = (1,0,…,0), e2 = (0,1,…,0), en = (0,0,…,1)

Ex: R4 {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

◼ Finite dimensional:

A vector space V  is called finite dimensional, if it has a basis consisting of a finite 

number of elements.

(the number of vectors in S)

◼ Dimension:

The dimension of a finite dimensional vector space V  is defined to be the number of 

vectors in a basis for V.

V: a vector space, S: a basis for V  dim(V) = #(S)
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◼ Notes:

(1) dim({0}) = 0 = #(Ø)

(2) dim(V) = n, S  V

S: a generating set     #(S)  n

S: a L.I. set                #(S)  n

S: a basis                    #(S) = n

Generating

Sets
Basis

Linearly

Independent

Sets

#(S) > n #(S) = n #(S) < n

dim(V) = n
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4.6 Rank and Nullity of a Matrix

The nullity of an mxn matrix A, denoted by nullity(A), is the dimension of the solution 

space of the linear system Ax = 0

◼ Rank of a Matrix:

◼ Nullity of a Matrix:

The rank of an mxn matrix A, denoted by rank(A), is the maximum number of linearly 

independent row vectors in A or the maximum number of linearly independent column 

vectors in A

◼ Theorem 4.6:

If A is any matrix, then rank(A) = rank(AT)
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◼ Notes:

(1) The maximum number of linearly independent vectors in a matrix is equal to the 

number of non-zero rows in its row echelon matrix

(2) The number of leading 1’s in the reduced row-echelon form of A is equal to the 

rank of A

(3) The number of free variables in the reduced row-echelon form of A is equal to 

the nullity of A

If rank([A|b]) = rank(A), then the system Ax = b is consistent.

◼ Theorem 4.7: (Consistency of Ax = b)
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A linear system of equations Ax = b is consistent iff the rank of A is the same as the 

rank of the augmented matrix of the system [A|b]

◼ Note: 

◼ Notes:

(1) If rank(A) = rank(A|b) = n, then the system Ax = b has a unique sol.

(2) If rank(A) = rank(A|b) < n, then the system Ax = b has ∞-many sols.

(3) If rank(A) < rank(A|b), then the system Ax = b is inconsistent.
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◼ Ex 1:  (Rank by Row Reduction)

1 1 1 3

2 2 6 8

3 5 7 8

A
− 

 = −
 − 

Gauss Elimination
1
2

1 1 1 3

0 1 2
0 0 0 0

− 
 − −
 
 

rank(A) = 2 (2 non-zero rows = 2 non-zero rows) 

◼ Ex 2: (Finding the solution set of a nonhomogeneous system)

1 2 3

1 3

1 2 3

1
3

3 2 1

x x x
x x
x x x

+ − = −
+ =

+ − =

nullity(A) = 2 (2 free variables)

Sol:

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 10/252023-2024

1 1 1

1 0 1

3 2 1

A
− 

 =
 − 

Gauss-Jordan Elimination
1 0 1

0 1 2

0 0 0

 
 −
 
 

1 1 1 1

[   ] 1 0 1 3

3 2 1 1

A
− − 

 =
 − 

b
Gauss-Jordan Elimination

1 0 1 3

0 1 2 4

0 0 0 0

 
 − −
 
 

1 3 1 3

2 3 2 3

3 3

2 4 4 2

x x x x
x x x x

+ = = −

− = −  = − +

letting x3 = t, then the solutions are: {(3 − t, −4 + 2t, t)|t ϵ R} 

So the system has infinitely many solutions (consistent)

◼ Check: rank( ) rank([ ]) 2A A= =b
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◼ Theorem 4.8 (Dimension Theorem for Matrices)

If A is a matrix with n columns, then rank(A) + nullity(A) = n

◼ Ex 3: (Rank and nullity of a matrix)

1 0 2 1 0

0 1 3 1 3

2 1 1 1 3

0 3 9 0 12

A

− 
 − −

=  − − −
 − 

G.J. Elimination

1 0 2 0 1

0 1 3 0 4

0 0 0 1 1

0 0 0 0 0

B

− 
 −

=  −
 
 

rank(A) = 3        (the number of nonzero rows in B)

nullity(A) = n – rank(A) = 5 − 3 = 2
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If A is an nxn  matrix, then the following conditions are equivalent:

◼ Summary of equivalent conditions for square matrices:

(1)  A is invertible

(2)  Ax = b has a unique solution for any n×1 matrix b.

(3)  Ax = 0  has only the trivial solution

(4)  A  is row-equivalent to In

(5)  |A| ≠ 0              

(6)  rank(A) = n

(7)  The n row vectors of A are linearly independent.

(8)  The n column vectors of A are linearly independent.
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4.7 Coordinates and Change of Basis

Let B = {v1, v2, …, vn} be an ordered basis for a vector space V and let x be a vector 

in V such that 

The scalars c1, c2, …, cn are called the coordinates of x relative to the basis B. The 

coordinate matrix (or coordinate vector) of x relative to B is the column matrix in Rn  

whose components are the coordinates of x.

◼ Coordinate representation relative to a basis

1 2 nc c c= + + +
1 2 nx v v v

 

1

2

n

c
c

c

 
 

=  
 
  

B
x
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Find the coordinate matrix of x = (–2, 1, 3) in R3 relative to the standard basis S = {(1, 

0, 0), ( 0, 1, 0), (0, 0, 1)}

◼ Ex 1: (Coordinates and components in Rn)

Sol:
( 2, 1, 3) 2(1, 0, 0) 1(0, 1, 0) 3(0, 0, 1)= − = − + +x

2

[ ] 1

3
S

− 
 =
 
 

x
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Find the coordinate matrix of x = (1, 2, –1) in R3 relative to the (nonstandard) basis 

B' = {u1, u2, u3} = {(1, 0, 1), ( 0, –1, 2), (2, 3, –5)}

◼ Ex 2: (Finding a coordinate matrix relative to a nonstandard basis)

Sol:

1 2 3 1 2 3(1,2, 1) (1,0,1) (0, 1,2) (2,3, 5)c c c c c c= + +  − = + − + −
1 2 3

x u u u

1 3 1

2 3 2

1 2 3 3

2 1 1 0 2 1

   3 2  i.e.   0 1 3 2

2 5 1 1 2 5 1

c c c
c c c

c c c c

+ =      
      − + = − =
     

+ − = − − −     

1 0 2 1

  0 1 3 2

1 2 5 1

 
  −
 − − 

G. J. Elimination
1 0 0 5

0 1 0 8  

0 0 1 2

 
 −
 − 

5

[ ] 8

2
B 

 
  = −
 − 

x
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Change of basis: Given the coordinates of a vector relative to a basis B, find the 

coordinates relative to another basis B ′.

◼ Change of Basis In Rn

1

2

3

1 0 2 1

0 1 3 2

1 2 5 1

c
c
c

     
     − =
     

− −     

In Ex 2, let B be the standard basis. Finding the coordinate matrix of x = (1, 2, –1) 

relative to the basis B ′ becomes solving for c1, c2, and c3 in the matrix equation

P   [x]B ′  [x]B
P is the transition matrix from B′ to B,
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P[x]B ′ = [x]B Change of basis from B ′ to B

[x]B ′ = P−1 [x]B Change of basis from B to B ′

1 4 2 1 5

3 7 3 2 8

1 2 1 1 2

−     
     − − = −
     

− − − −     
P−1   [x]B     [x]B ′

[x]B ′ = P−1 [x]B

Coordinate
matrix of x

relative to B ′

Transition
matrix from

B to B ′

Coordinate
matrix of x
relative to B

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 18/252023-2024

◼ Theorem 4.25: (The inverse of a transition matrix)

If P is the transition matrix from a basis B ' to a basis B in Rn, then  

 (1)  P is invertible 

    (2)  The transition matrix from B to B ' is P
–1

◼ Notes:

       

       1

{ , , , }, ' { , , , }

[ ] , [ ] , , [ ]    

[ ] , [ ] , , [ ]    

... ...

...

...
B B BB B B

B B BB B B

B B

P

P
 

−

  

  = =

  = =

= =

1 2 1 2

1 2

1 2

n n

n

n

u u u u u u

v u u u v v

v u u u v v
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◼ Theorem 4.26: (Transition matrix from B to B')

Let B = {v1, v2, … , vn} and B ' = {u1, u2, …, un} be two bases for Rn. Then the 

transition matrix P–1 from B to B ' can be found by using Gauss-Jordan elimination on 

the nx2n matrix [B '⋮B] as follows:

       

[B '⋮B] 

 

[In⋮P –1] 

 

B = {(–3, 2), (4,–2)} and B ' = {(–1, 2), (2,–2)} are two bases for R2 

    (a) Find the transition matrix from B ' to B.

    (b) Let      find [v]B

    (c) Find the transition matrix from B to B '.

◼ Ex 3: (Finding a transition matrix)

1
[ ] ,

2'B

 
=  

 
v
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Sol:

B          B ' I        P

(the transition matrix from B ' to B)

3 4 1 2

2 2 2 2
     

− − 
 − − 

G. J. Elimination 1 0 3 2

0 1 2 1
    

− 
 − 

3 2

2 1
P

− 
 =  − 

(a) 

(b) 
1 3 2 1 1

[ ] [ ] [ ]
2 2 1 2 0B B BP 

− −       
=  = = =       −       

v v v

◼ Check:
1

[ ] (1)( 1,2) (2)(2, 2) (3, 2)
2

1
[ ] ( 1)(3, 2) (0)(4, 2) (3, 2)

0

B

B



 
=  = − + − = −  

− 
=  = − − + − = −  

v v

v v
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(c) 

B '       B I P –1

1 2 3 4

2 2 2 2

− − 
 − − 

G. J. Elimination 1 0 1 2

0 1 2 3

− 
 − 

(the transition matrix from B to B ')1 1 2

2 3
P − − 

 =  − 

◼ Check:

1

2

3 2 1 2 1 0

2 1 2 3 0 1
PP I− − −     

= = =     − −     
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Find the transition matrix from B to B ' for The bases for R3 below.

◼ Ex 4: (Finding a transition matrix)

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B ' = {(1, 0, 1), (0,−1, 2), (2, 3,−5)}

Sol:
1 0 0 1 0 2
0 1 0 , 0 1 3
0 0 1 1 2 5

B B
   

   = = −
   −   

B '        B I         P –1

1 0 2 1 0 0

0 1 3 0 1 0

1 2 5 0 0 1

 
 −
 − 

G. J. Elimination
1 0 0 1 4 2

0 1 0 3 7 3

0 0 1 1 2 1

− 
 − −
 − − 

1 4 2 1 5

3 7 3 2 8

1 2 1 1 2

−     
     − − = −
     − − − −     

(Ex 2)
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4.8 Applications of Vector Spaces

Conic Sections And Rotation

ax2 + bxy + cy2 + dx + ey + f = 0 General equation of a conic section

performing a rotation of axes that eliminates the xy-term

a′(x′)2 + c′(y′)2 + d′x′ + e′y′ + f ′ = 0

The general equation ax2 + bxy + cy2 + dx + ey + f = 0 can be written in the form 

a′(x′)2 + c′(y′)2 + d′x′ + e′y′ + f ′ = 0 by rotating the coordinate axes counterclockwise 

through the angle θ, where θ is found using the equation cot 2θ = (a − c)/b. The 

coefficients of the new equation are obtained from the substitutions x = x′ cos θ − y′ sin

θ and y = x′ sin θ + y′ cos θ.

◼ Rotation of Axes:
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x xy y x y− + + − + =2 25 6 5 14 2 2 2 18 0

◼ Ex 1: (Rotation of a Conic Section)

Perform a rotation of axes to eliminate the xy-term in

Sol:

cot sin cos
a c

b


   

− −
= = =  =  = =

−

5 5 1
2 0

6 4 2

cos sin ( )

sin cos ( )

x x y x y

y x y x y

 

 

=  −  =  − 

=  +  =  + 

1

2
1

2

( ) ( )x y x y    + + − + =2 24 6 8 9 0

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 25/252023-2024

◼ Ex 2: (Rotation of a Conic Section)

( ) ( )x y + −
+ =

2 2

2

3 1
1

4 1
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