CBCCCL22: Linear Algebra and Matrix Theory

Lecture Notes 6: Vector Spaces: Part B

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
4.1 Vectors in R^{n}
1.2 Vector Snaces

Spanning Sets and Linear Independence
4.5 Basis and Dimension
4.6 Rank and Nullity of a Matrix
4.7 Coordinates and Change of Basis
4.8 Applications of Vector Spaces

4.5 Basis and Dimension

- Basis:
V : a vector space

$$
S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{n}\right\} \subseteq V
$$

(a) S spans V (ie., $\operatorname{span}(S)=V$)
(b) S is linearly independent
$\Rightarrow S$ is called a basis for V

- Notes:
(1) \varnothing is a basis for $\{\mathbf{0}\}$
(2) the standard basis for R^{3} :

$$
\{i, j, k\} \quad i=(1,0,0), \boldsymbol{j}=(0,1,0), \quad \boldsymbol{k}=(0,0,1)
$$

(3) the standard basis for R^{n} :

$$
\begin{gathered}
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \quad e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), e_{n}=(0,0, \ldots, 1) \\
\text { Ex: } R^{4} \quad\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}
\end{gathered}
$$

- Finite dimensional:

A vector space V is called finite dimensional, if it has a basis consisting of a finite number of elements.

- Dimension:

The dimension of a finite dimensional vector space V is defined to be the number of vectors in a basis for V.
V : a vector space, S : a basis for $V \quad \Rightarrow \operatorname{dim}(V)=\#(S) \quad$ (the number of vectors in S)

- Notes:
(1) $\operatorname{dim}(\{\boldsymbol{0}\})=0=\#(Ø)$
(2) $\operatorname{dim}(V)=n, S \subseteq V$

$$
S \text { : a L.I. set } \quad \Rightarrow \#(S) \leq n
$$

S : a generating set $\Rightarrow \#(S) \geq n$
S : a basis $\quad \Rightarrow \#(S)=n$

$\#(S)>n \quad \#(S)=n \quad \#(S)<n$

4.6 Rank and Nullity of a Matrix

- Rank of a Matrix:

The rank of an $m \mathrm{x} n$ matrix A, denoted by $\operatorname{rank}(A)$, is the maximum number of linearly independent row vectors in A or the maximum number of linearly independent column vectors in A

- Nullity of a Matrix:

The nullity of an $m \mathrm{x} n$ matrix A, denoted by $\operatorname{nullity}(A)$, is the dimension of the solution space of the linear system $A \boldsymbol{x}=\mathbf{0}$

- Theorem 4.6:

If A is any matrix, then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$

- Notes:
(1) The maximum number of linearly independent vectors in a matrix is equal to the number of non-zero rows in its row echelon matrix
(2) The number of leading 1 's in the reduced row-echelon form of A is equal to the rank of A
(3) The number of free variables in the reduced row-echelon form of A is equal to the nullity of A
- Theorem 4.7: (Consistency of $A x=b)$

If $\operatorname{rank}([A \mid \boldsymbol{b}])=\operatorname{rank}(A)$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent.

- Note:

A linear system of equations $A \boldsymbol{x}=\boldsymbol{b}$ is consistent iff the rank of A is the same as the rank of the augmented matrix of the system $[A \mid b]$

- Notes:
(1) If $\operatorname{rank}(A)=\operatorname{rank}(A \mid \boldsymbol{b})=n$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ has a unique sol.
(2) If $\operatorname{rank}(A)=\operatorname{rank}(A \mid \boldsymbol{b})<n$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ has ∞-many sols.
(3) If $\operatorname{rank}(A)<\operatorname{rank}(A \mid \boldsymbol{b})$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ is inconsistent.
- Ex 1: (Rank by Row Reduction)

$$
A=\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
2 & -2 & 6 & 8 \\
3 & 5 & -7 & 8
\end{array}\right] \xrightarrow{\text { Gauss Elimination }}\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
0 & 1 & -2 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{rank}(A)=2(2$ non-zero rows $=2$ non-zero rows $)$
$\operatorname{nullity}(A)=2(2$ free variables $)$

- Ex 2: (Finding the solution set of a nonhomogeneous system)

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=-1 \\
& x_{1}+x_{3}=3 \\
& 3 x_{1}+2 x_{2}-x_{3}=1
\end{aligned}
$$

Sol:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 0 & 1 \\
3 & 2 & -1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \\
& {[A \vdots \boldsymbol{b}]=\left[\begin{array}{rrr:r}
1 & 1 & -1 & -1 \\
1 & 0 & 1 & 3 \\
3 & 2 & -1 & 1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{rrr:r}
1 & 0 & 1 & 3 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{1}+x_{3}=3 \quad x_{1}=3-x_{3} \\
& x_{2}-2 x_{3}=-4 \quad \Rightarrow \quad x_{2}=-4+2 x_{3}
\end{aligned}
$$

letting $x_{3}=t$, then the solutions are: $\{(3-t,-4+2 t, t) \mid t \in R\}$
So the system has infinitely many solutions (consistent)

- Check: $\operatorname{rank}(A)=\operatorname{rank}([A b])=2$
- Theorem 4.8 (Dimension Theorem for Matrices)

If A is a matrix with n columns, then $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$

- Ex 3: (Rank and nullity of a matrix)

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 0 \\
0 & -1 & -3 & 1 & 3 \\
-2 & -1 & 1 & -1 & 3 \\
0 & 3 & 9 & 0 & -12
\end{array}\right] \xrightarrow{\text { G.J. Elimination }} B=\left[\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 1 \\
0 & 1 & 3 & 0 & -4 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rank}(A)=3 \quad(\text { the number of nonzero rows in } B)
$$

$$
\operatorname{nullity}(A)=n-\operatorname{rank}(A)=5-3=2
$$

- Summary of equivalent conditions for square matrices:

If A is an $n \mathrm{x} n$ matrix, then the following conditions are equivalent:
(1) A is invertible
(2) $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has a unique solution for any $n \times 1$ matrix \boldsymbol{b}.
(3) $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution
(4) A is row-equivalent to I_{n}
(5) $|A| \neq 0$
(6) $\operatorname{rank}(A)=n$
(7) The n row vectors of A are linearly independent.
(8) The n column vectors of A are linearly independent.

4.7 Coordinates and Change of Basis

- Coordinate representation relative to a basis

Let $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{n}\right\}$ be an ordered basis for a vector space V and let \boldsymbol{x} be a vector in V such that $\boldsymbol{x}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{n} \boldsymbol{v}_{n}$

The scalars $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of x relative to the basis B. The coordinate matrix (or coordinate vector) of x relative to B is the column matrix in R^{n} whose components are the coordinates of \boldsymbol{x}.

$$
[\boldsymbol{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

- Ex 1: (Coordinates and components in R^{n})

Find the coordinate matrix of $\boldsymbol{x}=(-2,1,3)$ in R^{3} relative to the standard basis $S=\{(1$, $0,0),(0,1,0),(0,0,1)\}$

Sol:

$$
\begin{gathered}
x=(-2,1,3)=-2(1,0,0)+1(0,1,0)+3(0,0,1) \\
{[x]_{S}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]}
\end{gathered}
$$

- Ex 2: (Finding a coordinate matrix relative to a nonstandard basis)

Find the coordinate matrix of $\boldsymbol{x}=(1,2,-1)$ in R^{3} relative to the (nonstandard) basis

$$
B^{\prime}=\left\{u_{1}, u_{2}, u_{3}\right\}=\{(1,0,1),(0,-1,2),(2,3,-5)\}
$$

Sol:

$$
\begin{aligned}
& \boldsymbol{x}=c_{1} \boldsymbol{u}_{\mathbf{1}}+c_{2} \boldsymbol{u}_{\mathbf{2}}+c_{3} \boldsymbol{u}_{\mathbf{3}} \Rightarrow(1,2,-1)=c_{1}(1,0,1)+c_{2}(0,-1,2)+c_{3}(2,3,-5) \\
& \Rightarrow \quad \begin{aligned}
c_{1}+2 c_{3} & =1 \\
-c_{2}+3 c_{3} & =2 \\
c_{1}+2 c_{2}-5 c_{3} & =-1
\end{aligned} \text { i.e. }\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]\left[\begin{array}{r}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & 1 \\
0 & -1 & 3 & 2 \\
1 & 2 & -5 & -1
\end{array}\right] \xrightarrow{\text { G. J. Elimination }}\left[\begin{array}{rrrr}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -8 \\
0 & 0 & 1 & -2
\end{array}\right] \Rightarrow[x]_{B^{\prime}}=\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right]
\end{aligned}
$$

- Change of Basis In R^{n}

Change of basis: Given the coordinates of a vector relative to a basis B, find the coordinates relative to another basis B^{\prime}.

In Ex 2, let B be the standard basis. Finding the coordinate matrix of $\boldsymbol{x}=(1,2,-1)$ relative to the basis B^{\prime} becomes solving for c_{1}, c_{2}, and c_{3} in the matrix equation

$$
\begin{array}{r}
{\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]} \\
P
\end{array}[x]_{B^{\prime}}[x]_{B} .
$$

P is the transition matrix from B^{\prime} to B,

$$
P[x]_{B^{\prime}}=[x]_{B} \text { Change of basis from } B^{\prime} \text { to } B
$$

$$
[x]_{B^{\prime}}=P^{-1}[x]_{B} \quad \text { Change of basis from } B \text { to } B^{\prime}
$$

- Theorem 4.25: (The inverse of a transition matrix)

If P is the transition matrix from a basis B^{\prime} to a basis B in R^{n}, then
(1) P is invertible
(2) The transition matrix from B to B^{\prime} is P^{-1}

- Notes:

$$
\begin{aligned}
& B=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \ldots, \boldsymbol{u}_{n}\right\}, \quad B^{\prime}=\left\{\boldsymbol{u}_{\mathbf{1}}^{\prime}, \boldsymbol{u}_{\mathbf{2}}^{\prime}, \ldots, \boldsymbol{u}_{n}^{\prime}\right\} \\
& {[\boldsymbol{v}]_{B}=\left[\left[\boldsymbol{u}_{1}^{\prime}\right]_{B},\left[\boldsymbol{u}_{\mathbf{2}}^{\prime}\right]_{B}, \ldots,\left[\boldsymbol{u}_{n}^{\prime}\right]_{B}\right][\boldsymbol{v}]_{B^{\prime}}=P[\boldsymbol{v}]_{B^{\prime}}} \\
& {[\boldsymbol{v}]_{B^{\prime}}=\left[\left[\boldsymbol{u}_{\mathbf{1}}\right]_{B^{\prime}},\left[\boldsymbol{u}_{\mathbf{2}}\right]_{B^{\prime}}, \ldots,\left[\boldsymbol{u}_{\boldsymbol{n}}\right]_{B^{\prime}}\right][\boldsymbol{v}]_{B}=P^{-1}[\boldsymbol{v}]_{B}}
\end{aligned}
$$

- Theorem 4.26: (Transition matrix from B to B^{\prime})

Let $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{n}\right\}$ and $B^{\prime}=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}\right\}$ be two bases for R^{n}. Then the transition matrix P^{-1} from B to B^{\prime} can be found by using Gauss-Jordan elimination on the $n \mathrm{x} 2 n$ matrix $\left[B^{\prime}: B\right]$ as follows: $\left[B^{\prime}: B\right] \longrightarrow\left[I_{n}: P^{-1}\right]$

- Ex 3: (Finding a transition matrix)
$B=\{(-3,2),(4,-2)\}$ and $B^{\prime}=\{(-1,2),(2,-2)\}$ are two bases for R^{2}
(a) Find the transition matrix from B^{\prime} to B.
(b) Let $[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, find $[\boldsymbol{v}]_{B}$
(c) Find the transition matrix from B to B^{\prime}.

Sol: (a) $\begin{gathered}{\left[\begin{array}{rrcrr}-3 & 4 & \vdots & -1 & 2 \\ 2 & -2 & \vdots & 2 & -2\end{array}\right]} \\ B\end{gathered} \xrightarrow{B^{\prime}} \quad \xrightarrow{\text { G. J. Elimination }}\left[\begin{array}{rrlll}1 & 0 & \vdots & 3 & -2 \\ 0 & 1 & \vdots & 2 & -1\end{array}\right]$

$$
\Rightarrow P=\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right] \quad \text { (the transition matrix from } B^{\prime} \text { to } B \text {) }
$$

(b) $\quad[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \Rightarrow[\boldsymbol{v}]_{B}=P[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

- Check:

$$
\begin{aligned}
& {[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{c}
1 \\
2
\end{array}\right] \Rightarrow v=(1)(-1,2)+(2)(2,-2)=(3,-2)} \\
& {[\boldsymbol{v}]_{B}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \Rightarrow v=(-1)(3,-2)+(0)(4,-2)=(3,-2)}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \Rightarrow P^{-1}=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right] \quad \text { (the transition matrix from } B \text { to } B^{\prime} \text {) }
\end{aligned}
$$

- Check:

$$
P P^{-1}=\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}
$$

- Ex 4: (Finding a transition matrix)

Find the transition matrix from B to B^{\prime} for The bases for R^{3} below.

$$
B=\{(1,0,0),(0,1,0),(0,0,1)\} \text { and } B^{\prime}=\{(1,0,1),(0,-1,2),(2,3,-5)\}
$$

$$
\text { Sol: } \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B^{\prime}=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr}
1 & 0 & 2 \vdots 1 & 0 & 0 \\
0 & -1 & 3 \vdots 0 & 1 & 0 \\
1 & 2 & -5 \vdots 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { G. J. Elimination }}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & 4 & 2 \\
0 & 1 & 0 & 3 & -7 & -3 \\
0 & 0 & 1 \vdots & 1 & -2 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
-1 & 4 & 2 \tag{Ex2}\\
3 & -7 & -3 \\
1 & -2 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
5 \\
-8 \\
-2
\end{array}\right]
$$

4.8 Applications of Vector Spaces

Conic Sections And Rotation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0 \quad \text { General equation of a conic section }
$$

performing a rotation of axes that eliminates the $x y$-term

$$
a^{\prime}\left(x^{\prime}\right)^{2}+c^{\prime}\left(y^{\prime}\right)^{2}+d^{\prime} x^{\prime}+e^{\prime} y^{\prime}+f^{\prime}=0
$$

- Rotation of Axes:

The general equation $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ can be written in the form $a^{\prime}\left(x^{\prime}\right)^{2}+c^{\prime}\left(y^{\prime}\right)^{2}+d^{\prime} x^{\prime}+e^{\prime} y^{\prime}+f^{\prime}=0$ by rotating the coordinate axes counterclockwise through the angle θ, where θ is found using the equation $\cot 2 \theta=(a-c) / b$. The coefficients of the new equation are obtained from the substitutions $x=x^{\prime} \cos \theta-y^{\prime} \sin$ θ and $y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$.

- Ex 1: (Rotation of a Conic Section)

Perform a rotation of axes to eliminate the $x y$-term in

$$
5 x^{2}-6 x y+5 y^{2}+14 \sqrt{2} x-2 \sqrt{2} y+18=0
$$

Sol:

$$
\begin{aligned}
& \cot 2 \theta=\frac{a-c}{b}=\frac{5-5}{-6}=0 \Rightarrow \theta=\frac{\pi}{4} \Rightarrow \sin \theta=\cos \theta=\frac{1}{\sqrt{2}} \\
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta=\frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right) \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta=\frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right) \\
& \Rightarrow\left(x^{\prime}\right)^{2}+4\left(y^{\prime}\right)^{2}+6 x^{\prime}-8 y^{\prime}+9=0
\end{aligned}
$$

- Ex 2: (Rotation of a Conic Section)

$$
\frac{\left(x^{\prime}+3\right)^{2}}{4}+\frac{\left(y^{\prime}-1\right)^{2}}{1^{2}}=1
$$

