CFCCL22: Linear Algebra and Natrix Theory

Lecture Notes 8: Inner Product Spaces: Part B

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University

5.1

Length and Dot Product in Rn
Inner Product Spaces
5.3 Orthonormal Bases: Gram-Schmidt Process
5.4 Mathematical Models and Least Square Analysis

5.3 Orthonormal Bases: Gram-Schmidt Process

- Orthogonal:

A set S of vectors in an inner product space V is called an orthogonal set if every pair of vectors in the set is orthogonal.

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{n}\right\} \subseteq V \\
& <\boldsymbol{v}_{i}, \boldsymbol{v}_{j}>=0, \quad i \neq j
\end{aligned}
$$

- Orthonormal:

An orthogonal set in which each vector is a unit vector is called orthonormal

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{n}\right\} \subseteq V \\
& <\boldsymbol{v}_{i}, \boldsymbol{v}_{j}>= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases}
\end{aligned}
$$

- Note:

If S is a basis, then it is called an orthogonal basis or an orthonormal basis.

- Ex 1: (A nonstandard orthonormal basis for R^{3})

Show that the following set is an orthonormal basis.

$$
S=\left\{\left(\frac{1}{v_{1}}, \frac{1}{\sqrt{2}}, 0\right), \quad\left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2 \sqrt{2}}{3}\right),\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right)\right\}
$$

Sol:

$$
\begin{array}{cc}
\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{\mathbf{2}}=-\frac{1}{6}+\frac{1}{6}+0=0 & \left\|\boldsymbol{v}_{\mathbf{1}}\right\|=\sqrt{\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{1}}}=\sqrt{\frac{1}{2}+\frac{1}{2}+0}=1 \\
\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{3}=\frac{2}{3 \sqrt{2}}-\frac{2}{3 \sqrt{2}}+0=0 & \left\|\boldsymbol{v}_{2}\right\|=\sqrt{\boldsymbol{v}_{2} \cdot \boldsymbol{v}_{\mathbf{2}}}=\sqrt{\frac{2}{36}+\frac{2}{36}+\frac{8}{9}}=1 \\
\boldsymbol{v}_{\mathbf{2}} \cdot \boldsymbol{v}_{3}=-\frac{\sqrt{2}}{9}-\frac{\sqrt{2}}{9}+\frac{2 \sqrt{2}}{9}=0 & \left\|\boldsymbol{v}_{3}\right\|=\sqrt{\boldsymbol{v}_{3} \cdot \boldsymbol{v}_{\mathbf{3}}}=\sqrt{\frac{4}{9}+\frac{4}{9}+\frac{1}{9}}=1 \\
\text { Show that the three vectors are } & \text { Show that each vector is } \\
\text { mutually orthogonal. } & \text { of length 1 }
\end{array}
$$

Thus S is an orthonormal set

- Theorem 5.9: (Orthogonal sets are linearly independent)

If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

- Corollary to Theorem 5.9:

If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis for V.

- Ex 2: (Using orthogonality to test for a basis)

Show that the following set is a basis for R^{4}

$$
\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
\{(2,3,2,-2), & (1,0,0,1), & (-1,0,2,1), & (-1,2,-1,1)\}
\end{array}
$$

Sol:
$v_{1}, v_{2}, v_{3}, v_{4}$. nonzero vectors

$$
\begin{array}{ll}
\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{2}}=2+0+0-2=0 & \boldsymbol{v}_{\mathbf{2}} \cdot \boldsymbol{v}_{\mathbf{3}}=-1+0+0+1=0 \\
\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{3}}=-2+0+4-2=0 & \boldsymbol{v}_{\mathbf{2}} \cdot \boldsymbol{v}_{\mathbf{4}}=-1+0+0+1=0 \\
\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{4}}=-2+6-2-2=0 & \boldsymbol{v}_{\mathbf{3}} \cdot \boldsymbol{v}_{\mathbf{4}}=1+0-2+1=0
\end{array}
$$

$\Rightarrow S$ is orthogonal $\Rightarrow S$ is a basis for R^{4}

- Theorem 5.10: (Coordinates relative to an orthonormal basis)

If $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is an orthonormal basis for an inner product space V, then the coordinate representation of a vector w with respect to B is

$$
w=<w, v_{1}>v_{1}+<w, v_{2}>v_{2}+\cdots+<w, v_{n}>v_{n}
$$

- Note:

If $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is an orthonormal basis for V and $\boldsymbol{w} \in V$, then the corresponding coordinate matrix of \boldsymbol{w} relative to B is

$$
[\boldsymbol{w}]_{B}=\left[\begin{array}{c}
<\boldsymbol{w}, \boldsymbol{v}_{\mathbf{1}}> \\
<\boldsymbol{w}, \boldsymbol{v}_{\mathbf{2}}> \\
\vdots \\
<\boldsymbol{w}, \boldsymbol{v}_{\boldsymbol{n}}>
\end{array}\right]
$$

- Ex 3: (Representing vectors relative to an orthonormal basis)

Find the coordinates of vector $\boldsymbol{w}=(5,-5,2)$ relative to the following orthonormal basis for R^{3}

$$
B=\left\{\left(\frac{3}{5}, \frac{4}{5}, 0\right),\left(-\frac{4}{5}, \frac{3}{5}, 0\right),(0,0,1)\right\}
$$

Sol:

$$
\begin{aligned}
& \left\langle\boldsymbol{w}, \boldsymbol{v}_{\mathbf{1}}\right\rangle=\boldsymbol{w} \cdot \boldsymbol{v}_{\mathbf{1}}=(5,-5,2) \cdot\left(\frac{3}{5}, \frac{4}{5}, 0\right)=-1 \\
& \left.<\boldsymbol{w}, \boldsymbol{v}_{\mathbf{2}}\right\rangle=\boldsymbol{w} \cdot \boldsymbol{v}_{\mathbf{2}}=(5,-5,2) \cdot\left(-\frac{4}{5}, \frac{3}{5}, 0\right)=-7 \quad \Rightarrow[\boldsymbol{w}]_{B}=\left[\begin{array}{c}
-1 \\
-7 \\
2
\end{array}\right] \\
& \left\langle\boldsymbol{w}, \boldsymbol{v}_{\mathbf{3}}\right\rangle=\boldsymbol{w} \cdot \boldsymbol{v}_{\mathbf{3}}=(5,-5,2) \cdot(0,0,1)=2
\end{aligned}
$$

- Theorem 5.11: (Gram-Schmidt orthonormalization process)
(1) Let $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis for an inner product space V
(2) Let $B^{\prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right\}$, where

$$
\begin{aligned}
& w_{1}=v_{1} \\
& w_{2}=v_{2}-\frac{\left.<v_{2}, w_{1}\right\rangle}{\left.<w_{1}, w_{1}\right\rangle} w_{1} \\
& w_{3}=v_{3}-\frac{\left.<v_{3}, w_{1}\right\rangle}{\left.<w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left.<v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}
\end{aligned}
$$

$$
\vdots
$$

$$
\boldsymbol{w}_{n}=\boldsymbol{v}_{n}-\sum_{i=1}^{n-1} \frac{<\boldsymbol{v}_{n}, \boldsymbol{w}_{i}>}{<\boldsymbol{w}_{i}, \boldsymbol{w}_{i}>} \boldsymbol{w}_{i}
$$

Then B^{\prime} is an orthogonal basis for V
(3) Let $\boldsymbol{u}_{i}=\frac{\boldsymbol{w}_{i}}{\left\|\boldsymbol{w}_{i}\right\|}$

Then $B^{\prime \prime}=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ is an orthonormal basis for V
Also, $\operatorname{span}\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{n}\right\}=\operatorname{span}\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \ldots, \boldsymbol{u}_{k}\right\}$ for $k=1,2, \ldots, n$

- Ex 4: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt orthonormalization process to the basis B for R^{2}

$$
B=\begin{array}{cc}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} \\
\{(1,1), & (0,1)\}
\end{array}
$$

Sol:

$$
\begin{aligned}
& w_{1}=v_{1}=(1,1) \\
& w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=(0,1)-\frac{1}{2}(1,1)=\left(-\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

The set $B^{\prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$ is an orthogonal basis for R^{2}

$$
u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

$$
u_{\mathbf{2}}=\frac{\boldsymbol{w}_{2}}{\left\|w_{2}\right\|}=\frac{1}{1 / \sqrt{2}}\left(-\frac{1}{2}, \frac{1}{2}\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

The set $B^{\prime \prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthonormal basis for R^{2}

- Ex 5: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt orthonormalization process to the basis B for R^{3}

$$
B=\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
\{(1,1,0), & (1,2,0), & (0,1,2)\}
\end{array}
$$

Sol:

$$
\begin{aligned}
w_{1} & =v_{1}=(1,1,0) \\
w_{2} & =v_{2}-\frac{<v_{2}, w_{1}>}{<w_{1}, w_{1}>} w_{1}=(1,2,0)-\frac{3}{2}(1,1,0)=\left(-\frac{1}{2}, \frac{1}{2}, 0\right) \\
w_{3} & =v_{3}-\frac{<v_{3}, w_{1}>}{<w_{1}, w_{1}>} w_{1}-\frac{\left\langle v_{3}, w_{2}>\right.}{<w_{2}, w_{2}>} w_{2} \\
& =(1,2,0)-\frac{1}{2}(1,1,0)-\frac{1 / 2}{1 / 2}\left(-\frac{1}{2}, \frac{1}{2}, 0\right)=(0,0,2)
\end{aligned}
$$

The set $B^{\prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$ is an orthogonal basis for R^{3}

$$
\begin{aligned}
& u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1,0)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{1 / \sqrt{2}}\left(-\frac{1}{2}, \frac{1}{2}, 0\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& u_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\frac{1}{2}(0,0,2)=(0,0,1)
\end{aligned}
$$

The set $B^{\prime \prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ is an orthonormal basis for R^{3}

5.4 Mathematical Models and Least Square Analysis

- Best Approximation; Least Squares:

Least Squares Problem: Given $A \boldsymbol{x}=\boldsymbol{b}$ of m equations in n unknowns, find \boldsymbol{x} in R^{n} that minimizes $\|\boldsymbol{b}-A \boldsymbol{x}\|$ with respect to the Euclidean inner product on R^{m}. We call \boldsymbol{x}, if it exists, a least squares solution of $A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ the least squares error vector, and $\|\boldsymbol{b}-A \boldsymbol{x}\|$ the least squares error

$$
\boldsymbol{b}-A \boldsymbol{x}=\left[\begin{array}{c}
e_{1} \\
e_{1} \\
\vdots \\
e_{m}
\end{array}\right] \Rightarrow\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{m}^{2}
$$

- Finding Least Squares Solutions: $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$
- Ex 1: Finding Least Squares Solutions

Find the Least Squares Solution, the least squares error vector, and the least squares error of the linear system

$$
x-y=4
$$

Sol:

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{ccc}
1 & 3 & -2 \\
-1 & 2 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
3 & 2 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{cc}
14 & -3 \\
-3 & 21
\end{array}\right] \\
& A^{T} \boldsymbol{b}=\left[\begin{array}{ccc}
1 & 3 & -2 \\
-1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
10
\end{array}\right]
\end{aligned}
$$

$$
A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b} \Rightarrow\left[\begin{array}{cc}
14 & -3 \\
-3 & 21
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
10
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
17 / 95 \\
143 / 285
\end{array}\right]
$$

$$
\boldsymbol{b}-A \boldsymbol{x}=\left[\begin{array}{c}
1232 / 285 \\
-154 / 285 \\
77 / 57
\end{array}\right], \text { and }\|\boldsymbol{b}-A \boldsymbol{x}\| \approx 4.556
$$

- Theorem 5.12:

If A is an $m \times n$ matrix with linearly independent column vectors, then for every $m \times 1$ matrix \boldsymbol{b}, the linear system $\boldsymbol{A x}=\boldsymbol{b}$ has a unique least squares
solution. This solution is given by

$$
\boldsymbol{x}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

جَــامعة
الـَـــنارة

- Mathematical Modeling Using Least Squares

Fitting a Curve to Data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

(a) $y=a+b x$

(b) $y=a+b x+c x^{2}$

(c) $y=a+b x+c x^{2}+d x^{3}$
mathematical model

Least Squares Fit of a Straight Line $y=\overline{a+b x}$

$$
\begin{aligned}
& y_{1}=a+b x_{1} \\
& y_{2}=a+b x_{2} \Rightarrow M \boldsymbol{v}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\boldsymbol{y} \\
& y_{n}+b x_{n} \\
& M \boldsymbol{v}=\boldsymbol{y} \Rightarrow M^{T} M \boldsymbol{v}=M^{T} \boldsymbol{y} \Rightarrow \boldsymbol{v}^{*}=\left[\begin{array}{c}
a^{*} \\
b^{*}
\end{array}\right]=\left(M^{T} M\right)^{-1} M^{T} \boldsymbol{y}
\end{aligned}
$$

$$
y=a^{*}+b^{*} x \quad \text { Least squares line of best fit or the regression line }
$$

It minimizes $\|\boldsymbol{y}-M \boldsymbol{v}\|^{2}=\left[y_{1}-\left(a+b x_{1}\right)\right]^{2}+\left[y_{2}-\left(a+b x_{2}\right)\right]^{2}+\cdots+\left[y_{n}-\left(a+b x_{n}\right)\right]^{2}$

$$
d_{1}=\left|y_{1}-\left(a+b x_{1}\right)\right|, d_{2}=\left|y_{2}-\left(a+b x_{2}\right)\right|, \cdots, d_{n}=\left|y_{n}-\left(a+b x_{n}\right)\right| \quad \text { residuals. }
$$

- Ex 2: Least Squares Straight Line Fit

Find the least squares straight line fit to the 4 points $(2,1),(5,2),(7,3)$, and $(8,3)$ Sol:

$$
\begin{aligned}
& M^{T} M=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]=\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right] \\
& M^{T} \boldsymbol{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
57
\end{array}\right] \\
& \boldsymbol{v}^{*}=\left(M^{T} M\right)^{-1} M^{T} \boldsymbol{y}=\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]^{-1}\left[\begin{array}{c}
9 \\
57
\end{array}\right]=\frac{1}{84}\left[\begin{array}{cc}
142 & -22 \\
-22 & 4
\end{array}\right]\left[\begin{array}{c}
9 \\
57
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{7} \\
\frac{5}{14}
\end{array}\right]
\end{aligned}
$$

Least Squares Fit of a Polynomial $y=a_{0} \stackrel{+a_{1} x}{ }+a_{2} x^{2}+\cdots+a_{m} x^{m}$

$$
\begin{aligned}
& \quad\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \\
& a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{m} x_{1}^{m}=y_{1} \\
& a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{m} x_{2}^{m}=y_{2} \\
& \vdots \\
& a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\cdots+a_{m} x_{n}^{m}=y_{n} \\
& M \boldsymbol{v}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{m}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\boldsymbol{y} \\
& M \boldsymbol{v}=\boldsymbol{y} \Rightarrow M^{T} M \boldsymbol{v}=M^{T} \boldsymbol{y} \Rightarrow \boldsymbol{v}^{*}=\left(M^{T} M\right)^{-1} M^{T} \boldsymbol{y}
\end{aligned}
$$

- Ex 3: Fitting a Quadratic Curve to Data

Newton's second law of motion $s=s_{0}+v_{0} t+\frac{1}{2} g t^{2}$
Laboratory experiment

Time t (sec)	.1	.2	.3	.4	.5
Displacement $s(\mathbf{f t})$	-0.18	0.31	1.03	2.48	3.73

Approximate g
Sol:
Let $s=a_{0}+a_{1} t+a_{2} t^{2}$
$(0.1,-0.18),(0.2,0.31),(0.3,1.03),(0.4,2.48),(0.5,3.73)$

$$
\begin{aligned}
& M=\left[\begin{array}{lll}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2} \\
1 & t_{4} & t_{4}^{2} \\
1 & t_{5} & t_{5}^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0.1 & 0.01 \\
1 & 0.2 & 0.04 \\
1 & 0.3 & 0.09 \\
1 & 0.4 & 0.16 \\
1 & 0.5 & 0.25
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5}
\end{array}\right]=\left[\begin{array}{c}
-0.18 \\
0.31 \\
1.03 \\
2.48 \\
3.73
\end{array}\right] \\
& \boldsymbol{v}^{*}=\left(\begin{array}{l}
a_{0}^{*} \\
a_{1}^{*} \\
a_{2}^{*}
\end{array}\right)=\left(M^{T} M\right)^{-1} M^{T} \boldsymbol{y}=\left(\begin{array}{c}
-0.4 \\
0.35 \\
16.1
\end{array}\right) \\
& g=2 a_{2}^{*}=2(16.1)=32.2 \text { feet } / s^{2} \\
& s_{0}=a_{0}^{*}=-0.4 \text { feet } v_{0}=a_{1}^{*}=0.35 \text { feet } / \mathrm{s}
\end{aligned}
$$

