حَـامعة
الـمَـنارة

CBCCCL22: Linear Algebra and Matrix Theory

Lecture Notes 9: linear Transformations: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
6.1 Introduction to Linear Transformations
6.2 The Kernel and Range of a Linear Transformation
6.3 Matrices for Linear Transformations
6.4 Similarity of Matrices
6.5 Applications of Linear Transformations

6.1 Introduction to Linear Transformations

- Images And Preimages of Functions:

Function T that maps a vector space V into a vector space W
$T: V \xrightarrow{\text { Mapping }} W, \quad V, W:$ vector spaces
V : the domain of T
W : the codomain of T

- Image of v under T :

If \boldsymbol{v} is in V and \boldsymbol{w} is in W such that: $T(\boldsymbol{v})=\boldsymbol{w}$
Then \boldsymbol{w} is called the image of \boldsymbol{v} under T

- Images And Preimages of Functions:
- The range of T : The set of all images of vectors in V.
- The preimage of \boldsymbol{w} : The set of all \boldsymbol{v} in V such that $T(\boldsymbol{v})=\boldsymbol{w}$.
- Ex 1: (A function from R^{2} into R^{2})

$$
\begin{aligned}
& T: R^{2} \rightarrow R^{2} \quad \boldsymbol{v}=\left(v_{1}, v_{2}\right) \in R^{2} \\
& T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)
\end{aligned}
$$

(a) Find the image of $\boldsymbol{v}=(-1,2)$. (b) Find the preimage of $\boldsymbol{w}=(-1,11)$ Sol:

$$
\text { (a) } \boldsymbol{v}=(-1,2) \Rightarrow T(v)=T(-1,2)=(-1-2,-1+2(2))=(-3,3)
$$

(b) $T(\boldsymbol{v})=\boldsymbol{w}=(-1,11) \Rightarrow T\left(v_{1}, v_{2}\right)=\left(v_{1}-v_{2}, v_{1}+2 v_{2}\right)=(-1,11)$

$$
\begin{aligned}
\Rightarrow & v_{1}-v_{2}=-1 \\
& v_{1}+2 v_{2}=11 \\
\Rightarrow & v_{1}=3, \quad v_{2}=4
\end{aligned}
$$

Thus $\{(3,4)\}$ is the preimage of $\boldsymbol{w}=(-1,11)$.

- Linear Transformation (L.T.):
V, W : vector spaces
$T: V \rightarrow W$: Linear Transformation
(1) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v}), \quad \forall \boldsymbol{u}, \boldsymbol{v} \in V$
(2) $T(c \boldsymbol{u})=c T(\boldsymbol{u}), \quad \forall c \in R$
- Ex 2: (Functions that are not linear transformations)
(a) $f(x)=\sin x$

$$
\begin{aligned}
& \sin \left(x_{1}+x_{2}\right) \neq \sin \left(x_{1}\right)+\sin \left(x_{2}\right) \\
& \sin \left(\frac{\pi}{2}+\frac{\pi}{3}\right) \neq \sin \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{3}\right)
\end{aligned}
$$

not a linear transformations
(b) $f(x)=x^{2}$

$$
\left(x_{1}+x_{2}\right)^{2} \neq x_{1}^{2}+x_{2}^{2} \quad(1+2)^{2} \neq 1^{2}+2^{2} \quad \text { not a linear transformations }
$$

(c) $f(x)=x+1$

$$
\begin{aligned}
& f\left(x_{1}+x_{2}\right)=x_{1}+x_{2}+1 \\
& f\left(x_{1}\right)+f\left(x_{2}\right)=\left(x_{1}+1\right)+\left(x_{2}+1\right)=x_{1}+x_{2}+2 \\
& f\left(x_{1}+x_{2}\right) \neq f\left(x_{1}\right)+f\left(x_{2}\right)
\end{aligned}
$$

- Notes: Two uses of the term "linear"
(1) $f(x)=x+1$ is called a linear function because its graph is a line.
(2) $f(x)=x+1$ is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication
- Zero transformation:

$$
T: V \rightarrow W \quad T(\boldsymbol{v})=\mathbf{0}, \forall \boldsymbol{v} \in V
$$

- Identity transformation:

$$
T: V \rightarrow V \quad T(\boldsymbol{v})=\boldsymbol{v}, \forall \boldsymbol{v} \in V
$$

- Theorem 6.1: (Properties of linear transformations)

$$
T: V \rightarrow W, \quad u, \boldsymbol{v} \in V
$$

(1) $T(\mathbf{0})=\mathbf{0}$
(2) $T(-\boldsymbol{v})=-T(\boldsymbol{v})$
(3) $T(\boldsymbol{u}-\boldsymbol{v})=T(\boldsymbol{u})-T(\boldsymbol{v})$
(4) If $\boldsymbol{v}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{n} \boldsymbol{v}_{\boldsymbol{n}}$ then

$$
\begin{aligned}
T(\boldsymbol{v}) & =T\left(c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{n} \boldsymbol{v}_{n}\right) \\
& =c_{1} T\left(\boldsymbol{v}_{\mathbf{1}}\right)+c_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+c_{n} T\left(\boldsymbol{v}_{n}\right)
\end{aligned}
$$

- Ex 3: (Linear transformations and bases)

Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that

$$
T(1,0,0)=(2,-1,4), \quad T(0,1,0)=(1,5,-2), \quad T(0,0,1)=(0,3,1)
$$

Find $T(2,3,-2)$
Sol:

$$
\begin{aligned}
(2,3,-2)= & 2(1,0,0)+3(0,1,0)-2(0,0,1) \\
T(2,3,-2) & =2 T(1,0,0)+3 T(0,1,0)-2 T(0,0,1) \\
& =2(2,-1,4)+3(1,5,-2)-2 T(0,3,1) \\
& =(7,7,0)
\end{aligned}
$$

- Ex 4: (A linear transformation defined by a matrix)

The function $T: R^{2} \rightarrow R^{3}$ is defined as $T(\boldsymbol{v})=A \boldsymbol{v}=\left[\begin{array}{cc}3 & 0 \\ 2 & 1 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$
(a) Find $T(\boldsymbol{v})$, where $\boldsymbol{v}=(2,-1)$
(b) Show that T is a linear transformation from R^{2} into R^{3}

Sol:

$$
\begin{aligned}
& \text { (a) } \boldsymbol{v}=(2,-1) \quad T(\boldsymbol{v})=A \boldsymbol{v}=\left[\begin{array}{cc}
3 & 0 \\
2 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
\downarrow \\
-1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3 \\
0
\end{array}\right] \quad \Rightarrow T(2,-1)=(6,3,0) \\
& \text { (b) } T(\boldsymbol{u}+\boldsymbol{v})=A(\boldsymbol{u}+\boldsymbol{v})=A \boldsymbol{u}+A \boldsymbol{v}=T(\boldsymbol{u})+T(\boldsymbol{v}) \\
& T(c \boldsymbol{u})=A(c \boldsymbol{u})=c(A \boldsymbol{u})=c T(\boldsymbol{u}) \\
& \quad \text { (vector addition) } \\
&
\end{aligned}
$$

- Theorem 6.2: (The linear transformation given by a matrix)

Let A be an $m \times n$ matrix. The function T defined by $T(\boldsymbol{v})=A \boldsymbol{v}$ is a linear transformation from R^{n} into R^{m}.

- Note:

$$
\begin{gathered}
\text { } R^{n} \text { vector } \\
A \boldsymbol{R}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\cdots+a_{m n} v_{n}
\end{array}\right] \\
T(\boldsymbol{v})=A \boldsymbol{v} R^{n} \text { into } R^{m} \\
T: R^{n} \rightarrow R^{m}
\end{gathered}
$$

- Ex 5: (Rotation in the plane)

Show that the L.T. T: $R^{2} \rightarrow R^{2}$ given by the matrix $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
has the property that it rotates every vector in R^{2} counterclockwise about the origin through the angle θ.

Sol:
$\boldsymbol{v}=(x, y)=(r \cos \alpha, r \sin \alpha)$ (polar coordinates)
r : the length of \boldsymbol{v}
α : the angle from the positive x-axis counterclockwise to the vector \boldsymbol{v}

$$
\begin{aligned}
T(\boldsymbol{v})=A \boldsymbol{v} & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
r \cos \alpha \\
r \sin \alpha
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos \theta \cos \alpha-r \sin \theta \sin \alpha \\
r \sin \theta \cos \alpha+r \cos \theta \sin \alpha
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos (\theta+\alpha) \\
r \sin (\theta+\alpha)
\end{array}\right]
\end{aligned}
$$

r : the length of $T(v)$
$\theta+\alpha$: the angle from the positive x-axis counterclockwise to the vector $T(v)$
Thus, $T(\boldsymbol{v})$ is the vector that results from rotating the vector \boldsymbol{v} counterclockwise through the angle θ.

- Ex 6: (A projection in R^{3})

The linear transformation $T: R^{3} \rightarrow R^{3}$ is given by the matrix $A=\left[\begin{array}{lll}1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is called a projection in R^{3}.

If $\boldsymbol{v}=(x, y, z)$ is a vector in R^{3}, then $T(\boldsymbol{v})=(x, y, 0)$.

Projection onto $x y$-plane

6.2 The Kernel and Range of a Linear Transformation

- Kernel of a linear transformation T :

Let $T: V \rightarrow W$ be a linear transformation. Then the set of all vectors \boldsymbol{v} in V that satisfy $T(\boldsymbol{v})=\mathbf{0}$ is called the kernel of T and is denoted by $\operatorname{ker}(T)$.

$$
\operatorname{ker}(T)=\{\boldsymbol{v} \mid T(\boldsymbol{v})=\mathbf{0}, \forall \boldsymbol{v} \in V\}
$$

- Ex 1: (The kernel of the zero and identity transformations)
(a) $T(v)=\mathbf{0}$ (the zero transformation $T: V \rightarrow W$)

$$
\operatorname{ker}(T)=V
$$

(b) $T(\boldsymbol{v})=\boldsymbol{v}$ (the identity transformation $T: V \rightarrow V$)

$$
\operatorname{ker}(T)=\{\mathbf{0}\}
$$

- Ex 2: (Finding the kernel of a L.T.)
$T(\boldsymbol{v})=(x, y, 0)$
$T: R^{3} \rightarrow R^{3}$
$\operatorname{ker}(T)=$?
Sol:

$$
\operatorname{ker}(T)=\{(0,0, z) \mid z \text { is a real number }\}
$$

- Ex 3: (Finding the kernel of a linear transformation)

$$
\begin{aligned}
& T(\boldsymbol{x})=A \boldsymbol{x}=\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad\left(T: R^{3} \rightarrow R^{2}\right) \\
& \operatorname{ker}(T)=?
\end{aligned}
$$

Sol:

$$
\begin{aligned}
& \operatorname{ker}(T)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid T\left(x_{1}, x_{2}, x_{3}\right)=(0,0), \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}\right\} \\
& T\left(x_{1}, x_{2}, x_{3}\right)=(0,0) \\
& {\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & -2 & 0 \\
-1 & 2 & 3 & 0
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
& \Rightarrow \operatorname{ker}(T)=\{t(1,-1,1) \mid t \text { is a real number }\}=\operatorname{span}\{(1,-1,1)
\end{aligned}
$$

- Theorem 6.3: (The kernel is a subspace of V)

The kernel of a linear transformation $T: V \rightarrow W$ is a subspace of the domain V.

- Range of a linear transformation T :

Let $T: V \rightarrow W$ be a L.T.
Then the set of all vectors \boldsymbol{w} in W that are images of vectors in V is called the range of T and is denoted by range (T)

$$
\operatorname{range}(T)=\{T(\boldsymbol{v}) \mid \forall \boldsymbol{v} \in V\}
$$

- Theorem 6.4: (The range of T is a subspace of W)

The range of a linear transformation $T: V \rightarrow W$ is a subspace of the W

- Notes:
$T: V \rightarrow W$: is Linear Transformation
(1) $\operatorname{ker}(T)$ is a subspace of V
(2) Range (T) is a subspace of W
- Rank of a linear transformation $T: V \rightarrow W$: $\operatorname{rank}(T)=$ the dimension of the range of T
- Nullity of a linear transformation $T: V \rightarrow W$:
 $\operatorname{nullity}(T)=$ the dimension of the kernel of T
- Note:

Let $T: R^{n} \rightarrow R^{m}$ be the L.T. given by $T(x)=A \boldsymbol{x}$. Then

$$
\Rightarrow \operatorname{rank}(T)=\operatorname{rank}(A), \quad \operatorname{nullity}(T)=\operatorname{nullity}(A)
$$

- Theorem 6.5: (Sum of rank and nullity)

Let $T: V \rightarrow W$ be a L.T. from an n-dimensional vector space V into a vector space W. Then

$$
\begin{aligned}
& \operatorname{rank}(T)+\operatorname{nullity}(T)=n \\
& \operatorname{dim}(\operatorname{range} \text { of } T)+\operatorname{dim}(\text { kernel of } T)=\operatorname{dim}(\text { domain of } T)
\end{aligned}
$$

- Ex 4: (Finding rank and nullity of a linear transformation)

Find the rank and nullity of the L.T. $T: R^{3} \rightarrow R^{3}$ defined by Sol:
$\operatorname{rank}(T)=\operatorname{rank}(A)=2$

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{domain}$ of $T)-\operatorname{rank}(T)=3-2=1$

- Ex 5: (Finding rank and nullity of a linear transformation)

Let $T: R^{5} \rightarrow R^{7}$ be a linear transformation
(a) Find the dimension of the kernel of T if the dimension of the range is 2
(b) Find the rank of T if the nullity of T is 4
(c) Find the rank of T if $\operatorname{ker}(T)=\{\boldsymbol{0}\}$

Sol:
(a) $\operatorname{dim}($ domain of $T)=5$
$\operatorname{dim}(\operatorname{ker}$ of $T)=n-\operatorname{dim}(\operatorname{range}$ of $T)=5-2=3$
(b) $\operatorname{rank}(T)=n-\operatorname{nullity}(T)=5-4=1$
(c) $\operatorname{rank}(T)=n-\operatorname{nullity}(T)=5-0=5$

- One-to-one:

A function $T: V \rightarrow W$ is one-to-one when the preimage of every \boldsymbol{w} in the range consists of a single vector
T is one-to-one if and only if, for all \boldsymbol{u} and \boldsymbol{v} in $V, T(\boldsymbol{u})=T(\boldsymbol{v})$ implies $\boldsymbol{u}=\boldsymbol{v}$.

- Onto:

A function $T: V \rightarrow W$ is onto when every element in W has a preimage in V. (T is onto W when W is equal to the range of T)

- Theorem 6.6: (One-to-one linear transformation)

Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one iff $\operatorname{ker}(T)=\{\mathbf{0}\}$

- Ex 6: (One-to-one and not one-to-one linear transformation)
(a) The linear transformation $T: M_{3 \times 2} \rightarrow M_{2 \times 3}$ given by $T(A)=A^{T}$ is one-to-one because its kernel consists of only the $m \mathrm{x} n$ zero matrix
(b) The zero transformation $T: R^{3} \rightarrow R^{3}$ is not one-to-one because its kernel is all of R^{3}
- Theorem 6.7: (Onto linear transformation)

Let $T: V \rightarrow W$ be a linear transformation, where W is finite dimensional Then T is onto iff the rank of T is equal to the dimension of W.

- Theorem 6.8: (One-to-one and onto linear transformation)

Let $T: V \rightarrow W$ be a linear transformation, with vector space V and W both of dimension n. Then T is one-to-one iff it is onto.

- Ex 7:

Let $T: R^{n} \rightarrow R^{m}$ be a L.T. given by $T(x)=A x$. Find the nullity and rank of T to determine whether T is one-to-one, onto, or neither

$$
\text { (a) } A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text {, (b) } A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right], \text { (c) } A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1
\end{array}\right], \text { (d) } A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Sol:

