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Chapter 3

The z-transform
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▪ The z-transform plays the same role in the analysis of DTLTI systems as the 

Laplace transform does in the analysis of CTLTI systems.

▪ The z-transform is an extension of the DTFT to address two problems:

• First, there are many useful signals in practice, such as nu[n], for which the 

DT Fourier transform does not exist. 

• Second, the transient response of a system due to initial conditions or due 

to changing inputs cannot be computed using the DTFT approach.

▪ The decomposition of an arbitrary sequence into a linear combination 

of scaled and shifted impulses,                                      shows that every LTI 

system can be represented by the convolution sum:

1. Introduction

[ ] [ ] [ ]
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▪ The impulse response sequence h[n] specifies completely the behavior and 

the properties of the associated LTI system.

▪ In general, any sequence that passes through a LTI system changes shape. 

We now ask: is there any sequence that retains its shape when it passes 

through an LTI system?

[ ] [ ] [ ] [ ] [ ]
k k

y n x k h n k h k x n k
 

=− =−
= − = − 

where z is a complex variable defined everywhere on the complex plane

( )[ ] [ ] [ ] = ( ) , for all n k k n n
k k

y n h k z h k z z H z z n
 − −

=− =−
= = 

Let us consider the complex exponential sequence: x[n] = zn, for all n

▪ Thus, the output sequence is the same complex exponential as the input 

sequence, multiplied by a constant H(z) that depends on the value of z. 
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▪ The quantity H(z), as a function the complex variable z, is known as the 

system function or transfer function of the system.

▪ The complex exponential sequences are eigenfunctions of LTI systems.

▪ The constant H(z), for a specified value of the complex variable z, is the 

eigenvalue associated with the eigenfunction zn.

2. The z-transform

▪ Since the z-transform is an infinite power series, it exists only for those values 

of z for which this series converges. 

▪ The region of convergence (ROC) of X(z) is the set of all values of z for which 

X(z) attains a finite value.

( ) { [ ]} [ ] n

n

X z x n x n z


−

=−

= = Z two-sided or bilateral z-transform
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Let us express the complex variable z in polar form as: z = rejw

( ) [ ]

( ) [ ] [ ] [ ]
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n j n n j n n
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X z x n r e x n r e x n r

w
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w w
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= =−
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− − − − −
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=

 =  =



  

[ ] [ ]
( ) [ ] [ ]

1

0 1 0
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X z x n r x n r

r r
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−
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converges for all points inside a circle of radius r1

[ ]

0
n

n

x n

r



=



[ ] n
n
x n r



=
− 1

converges for all points outside a circle of radius r2
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▪ Note: The ROC depends only on r and not on w.

X(z) converges for all points within an annular region of the form r2 < r < r1

▪ Note: The discrete-time Fourier transform X(ejw) may be 

viewed as a special case of the z-transform X(z).

( ) ( ) [ ] { [ ]}j

j j n
z e n

X z X e x n e x nw

w w −

= =−
= = = F

▪ The values of z for which X(z) = 0 are called zeros of X(z), and 

the values of z for which X(z) is infinite are known as poles.

▪ Note: The ROC cannot include any poles.

▪ For finite duration sequences the ROC is the entire z-plane, with the possible 

exception of z = 0 or z = ∞.
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▪ For infinite duration sequences the ROC can have one of the following 

shapes:

• Right-sided (x[n] = 0, n < n0) ⇒ ROC: |z| > r.

• Left-sided (x[n] = 0, n > n0) ⇒ ROC: |z| < r.

• Two-sided ⇒ ROC: r2 < |z| < r1.

▪ Example 1: z-Transform of the unit-impulse

( ) { [ ]} [ ] [ ]n
n

X z n x n z x z
 −

=−
= = = = 00 1Z

It converges at every point in the z-plane

▪ Example 2: z-Transform of a causal exponential signal x[n] = anu[n]

( ) [ ] ( )
  

− − −

−
=− = =

= = = = =
−−

  n n n n n

n n n

z
X z a u n z a z az

z aaz
1

1
0 0

1

1
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converge if: |az−1| < 1 ⇒ |z| > |a|

The inverse z-transform

▪ The recovery of a sequence x[n] from its z-transform (X(z) and ROC) can be 

formally done using the formula (inverse z-transform ):

[ ] { ( )} ( )1 11

2
nx n X z X z z dz

j
− −


= = Z

where  is a counterclockwise closed circular contour centered at the origin 

and with radius r such that  is in the ROC of X.

▪ We do not usually compute the inverse z-transform using the above equation.

▪ For rational functions, the inverse z-transform can be more easily computed 

using partial fraction expansions (PFE).
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▪ Example 3: Finding the inverse z-transform using partial fractions

( )
( )( ).

z
X z

z z

−

− −

+
=

− −

1

1 1

1

1 1 0 5

( )
.

X z
z z− −

= −
− −1 1

4 3

1 1 0 5

If ROC: |z| > 1, both fractions are the z-transform of causal sequences. Hence

( )[ ] [ ] [ ]
n

x n u n u n= − 1
24 3

If ROC: ½ < |z| < 1, ( )[ ] [ ] [ ]= − − − −
n

x n u n u n1
24 1 3

If ROC: |z| < ½, ( )[ ] [ ] [ ]= − − − + − −
n

x n u n u n1
24 1 3 1

causal

anticausal

noncausal
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Properties of z-Transform

Property x[n] X(z) ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊃ (R1 ∩ R2)

Time shifting x[n − k] X(z)z−k R ± {0 or ∞}

Time reversal x[−n] X(z−1) R−1

Multiply by exp. anx[n] X(z/a) |a|R

Differentiate in z nx[n] −z dX(z)/dz R

Convolution x1[n]*x2[n] X1(z) X2(z) ⊃ (R1 ∩ R2)

Summation ⊃ (R ∩ (z > 1))[ ]
=−


n

k

x k ( )
−

z
X z

z 1
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[ ] cos( ) [ ]x n n u nw= 0

ROC is |z| > 1

cos( ) [ ] [ ] [ ]
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0

11 2 1 2

1 21 1
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▪ Example 4: z-Transform of a cosine signal

▪ Example 5: z-Transform of a sine signal

[ ] sin( ) [ ]x n n u nw= 0

sin( ) [ ] [ ] [ ]
j n j n

j jn u n e u n e u nw ww −
= −0 01 1

0 2 2

https://manara.edu.sy/


https://manara.edu.sy/The Z-Transform 13/272023-2024

ROC is |z| > 1

{sin( ) [ ]} { [ ]} { [ ]}

sin( )/ /

cos( )

j n j n
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▪ Initial and final value properties of the z-transform applies to causal signals 

only.
[0] lim ( )

→
=
z

x X zInitial value:

lim [ ] lim ( ) ( )
n z
x n z X z

→ →
= −

1
1Final value:

3. Transfer function of LTI systems

h[n]

H(z)

x[n]

X(z)

y[n]

Y(z)

[ ] [ ] [ ] [ ] [ ]

( ) ( ) ( )
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
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= * = −

=


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▪ Example 6: Determine the response of a system with impulse response 

h[n] = anu[n], |a| < 1 to the input x[n] = u[n] using the convolution theorem.

( ) , and ( ) ,
1 1

0 0

1 1
1

1 1
n n n

n n

H z a z z a X z z z
az z

 
− −

− −
= =

= = > = = >
− −

 

( ) , max{ , }
( )( )1 1

1
1 1

1 1
Y z z a

az z− −
= > =

− −

( ) ,
1 1

1 1 1
1

1 1 1
Y z z

a z az− −

 
= − > 

− − − 

[ ] ( [ ] [ ]) [ ]
1

11 1
1 1

n
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a a

+
+ −

= − =
− −

which is exactly the steady-state response
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Causality and stability

• A TF H(z) with the ROC that is the exterior of a circle, including ∞, is a 

necessary and sufficient condition for DTLTI system to be causal.

• An LTI system with transfer function H(z) = N(z)/D(z) is causal if and only if:

1. the ROC is |z| > |p|, where p is the outermost pole and 2. deg N  deg D.

• An LTI system is stable if and only if the ROC of H(z) includes the unit circle 

|z| = 1.

• A causal LTI system with rational transfer functionH(z) is stable if and only if 

all poles of H(z) are inside the unit circle.

▪ The conditions for causality and stability are different and that one does not 

imply the other. 
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▪ For example, a causal system may be stable or unstable, just as a noncausal 

system may be stable or unstable. 

▪ Similarly, an unstable system may be either causal or noncausal, just as a 

stable system may be causal or noncausal.

▪ Example 7: A linear time-invariant system is characterized by the transfer 

function:
( )

 
= − − + 

z z
H z

z z3 1
2 2

1
2

If ROC: |z| > 3/2, the system is causal and unstable

( ) ( )[ ] [ ] [ ]= − −
n n

h n u n u n1 3 1 1
2 2 2 2

( ) ( )[ ] [ ] [ ]= − − − − −
n n

h n u n u n1 3 1 1
2 2 2 21

If ROC: 1/2 < |z| < 3/2, the system is noncausal and stable
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Interconnection of two LTI systems

cascade interconnection

parallel interconnection

If ROC: |z| < 1/2, the system is anticausal and unstable

( ) ( )[ ] [ ] [ ]= − − − + − − −
n n

h n u n u n1 3 1 1
2 2 2 21 1

[ ] [ ] [ ]

( ) ( ) ( )

h n h n h n

H z H z H z

= +

= +

1 2

1 2

[ ] [ ] [ ]

( ) ( ) ( )

h n h n h n

H z H z H z

= *

=

1 2

1 2
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4. Linear constant-coefficient difference equations

[ ] [ ] [ ]
1 0
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where zl’s are the system zeros and pk’s are the system poles, and b0 is a 

constant gain term.

Impulse response

▪ The transfer function H(z) with distinct poles can be expressed in the form:

( ) 1
0 11

M N N
k k

k
k k k

A
H z C z

p z

−
−

−
= =

= +
−

 

where ( ) ( )11
kk k z pA p z X z−

=
= −

and Ck = 0 when M < N, that is, when the rational function H(z) is proper. 

If we assume that the system is causal, then the ROC is the exterior of a 

circle starting at the outermost pole, and the impulse response is:
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[ ] [ ] ( ) [ ]
0 1

M N N
n

k k k
k k

h n C n k A p u n
−

= =

= − + 

5. Connections between pole-zero locations and time-domain behavior

The TF H(z) with distinct poles: ( ) 1
0 11

M N N
k k

k
k k k

A
H z C z

p z

−
−

−
= =

= +
−

 

where the first summation is included only if M ≥ N

▪ The roots of a polynomial with real coefficients either must be real or must 

occur in complex conjugate pairs.

( )
1 2 1

0 1
1 1 2

0 1 1 1 21 1

K KM N
k k k k
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H z C z
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−

− − −
= = =
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= + +

− + +
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First-order systems
( ) , ,  real11

b
H z a b

az −
=

−

Assuming a causal system, the impulse response is given by the following 

real exponential sequence: [ ] [ ]nh n ba u n=

Second-order systems
( )

( )
−

− −

+ +
= =

+ + + +

b b z z b z b
H z

a z a z z a z a

1
0 1 0 1
1 2 2

1 2 1 21

There are three possible cases for poles: 1. Real and distinct, 2. Real and 

equal, 3. Complex conjugate.

The impulse response of a causal system with a pair of complex conjugate 

poles: [ ] cos( ) [ ]02 nh n A r n u nw = + , where A is the PFE coefficient
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Impulse responses associated with real poles in the z-plane
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Impulse responses associated with a pair of complex conjugate poles in the z-plane
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▪ Example 8: Given that causal system:                                      , find( ) 2

1

0 9 0 81. .
z

H z
z z

+
=

− +
a. its difference equation representation, and

b. its impulse response representation.

( )
( )

( )

1 2

2 1 2

1

0 9 0 81 1 0 9 0 81. . . .
Y z z z z

H z
X z z z z z

− −

− −

+ +
= = =

− + − +
a. 

( ) ( ) ( ) ( ) ( )1 2 1 20 9 0 81. .Y z z Y z z Y z z X z z X z− − − −− + = +

[ ] [ ] [ ] [ ] [ ]0 9 1 0 81 2 1 2. .y n y n y n x n x n− − + − = − + −

[ ] [ ] [ ] [ ] [ ]0 9 1 0 81 2 1 2. .y n y n y n x n x n= − − − + − + −

b. 
/ /

( ) ,3 1 3 1

0 6173 0 9979 0 6173 0 9979
1 2346 0 9

1 0 9 1 0 9

. . . .. .
. .j j

j j
H z z

e z e z − − −

− + − −
= + + >

− −

From z-transform table:
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/

/

[ ] [ ] [( )

( ) ] [ ]

3

3

1 2346 0 6173 0 9979 0 9

0 6173 0 9979 0 9

. . . .

. . .

n j n

n j n

h n n j e

j e u n





 −= + − +

+ − −

[ ] [ ] [ cos( / ) sin( / )] [ ]1 2346 0 9 1 2346 3 1 9958 3. . . .nh n n n n u n  = + − +

[ ] [ ] [ cos( / ) sin( / )] [ ]0 0 0 9 1 2346 3 1 9958 3 1. . .nh h n n n u n =  = − + −

6. The one-sided z-transform

( ) { [ ]} { [ ] [ ]} [ ]


+ + −

=

= = =  n

n

X z x n x n u n x n z
0

Z Z
one-sided or 

unilateral z-transform

▪ Almost all properties we have studied for the two-sided z-transform carry over 

to the one-sided z-transform with the exception of the time shifting property.

{ [ ]} [ ] [ ] [ ] [ ] ( [ ] [ ] )

[ ] ( )

x n x x z x z x z x x z

x z X z

+ − − − −

− +

− = − + + + = − + + +

= − +

1 2 1 1

1

1 1 0 1 1 0 1

1

Z
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{ [ ]} [ ] [ ] ( )x n x x z z X z+ − − +− = − + − +1 22 2 1Z

In general, for any k > 0, we can show that

{ [ ]} ( ) [ ]
kk m k
m

x n k z X z x m z+ − + −

=
− = + − 1

Z

▪ This property makes possible the solution of linear constant-coefficient 

difference equations with nonzero initial conditions.

▪ Example 9: A linear time-invariant system

[ ] [ ] [ ],= − + y n ay n x n n1 0 with y[−1] ≠ 0

[ ]
( ) [ ] ( ) ( ) ( ) ( )+ − + + + +

− −

−

−
= − + +  = +

− −
zero stateinitial condition

ay
Y z ay az Y z X z Y z X z

az az
1

1 1

1 1
1

1 1

yzi[n] = ay[−1]an = y[−1]an+1, n ≥ 0If the input x[n] = 0 for all n ≥ 0, then:
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If the initial condition is zero then the system is at rest or at zero-state:

( ) ( ) ( ), ( )  or [ ] [ ]+ +

−
= = =

−

nY z H z X z H z h n a u n
az 1
1

1

and hence the second term can be identified as the zero-state response yzs[n]. 

The complete response is given by:

[ ] [ ] [ ] [ ],+

=
= − + − 

nn
k

y n y a h k x n k n1
0

1 0

If we set x[n] = u[n]

[ ] [ ] /( ) /( )
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− − − −
= + = + −

− − − − − −

ay ay a a a
Y z
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