CHADC606: Digital Signal Processing

Lecture Notes 3: The z-transform

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Chapter 3
The z-transform

1. Introduction
2. The z -transform
3. Transfer function of LTI systems
4. Linear constant-coefficient difference equations
5. Connections between pole-zero locations and time-domain behavior
6. The one-sided z-transform
7. Introduction

- The z-transform plays the same role in the analysis of DTLTI systems as the Laplace transform does in the analysis of CTLTI systems.
- The z-transform is an extension of the DTFT to address two problems:
- First, there are many useful signals in practice, such as $n u[n]$, for which the DT Fourier transform does not exist.
- Second, the transient response of a system due to initial conditions or due to changing inputs cannot be computed using the DTFT approach.
- The decomposition of an arbitrary sequence into a linear combination of scaled and shifted impulses, $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$ shows that every LTI system can be represented by the convolution sum:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

- The impulse response sequence $h[n]$ specifies completely the behavior and the properties of the associated LTI system.
- In general, any sequence that passes through a LTI system changes shape. We now ask: is there any sequence that retains its shape when it passes through an LTI system?
Let us consider the complex exponential sequence: $x[n]=z^{n}$, for all n where z is a complex variable defined everywhere on the complex plane

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] z^{n-k}=\left(\sum_{k=-\infty}^{\infty} h[k] z^{-k}\right) z^{n}=H(z) z^{n}, \quad \text { for all } n
$$

- Thus, the output sequence is the same complex exponential as the input sequence, multiplied by a constant $H(z)$ that depends on the value of z.
- The quantity $H(z)$, as a function the complex variable z, is known as the system function or transfer function of the system.
- The complex exponential sequences are eigenfunctions of LTI systems.
- The constant $H(z)$, for a specified value of the complex variable z, is the eigenvalue associated with the eigenfunction z^{n}.

2. The z-transform

$$
X(z)=z\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad \text { two-sided or bilateral z-transform }
$$

- Since the z-transform is an infinite power series, it exists only for those values of z for which this series converges.
- The region of convergence (ROC) of $X(z)$ is the set of all values of z for which $X(z)$ attains a finite value.

Let us express the complex variable z in polar form as: $z=r e^{j \omega}$
$\left.X(z)\right|_{z=r e^{j \omega}}=\sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j \omega n}$
$\Rightarrow|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j \omega n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x[n] r^{-n} e^{-j \omega n}\right|=\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|$
$|X(z)| \leq \sum_{n=-\infty}^{-1}\left|x[n] r^{-n}\right|+\sum_{n=0}^{\infty}\left|\frac{x[n]}{r^{n}}\right|=\sum_{n=1}^{\infty}\left|x[-n] r^{n}\right|+\sum_{n=0}^{\infty}\left|\frac{x[n]}{r^{n}}\right|$
$\sum_{n=1}^{\infty}\left|x[-n] r^{n}\right|$ converges for all points inside a circle of radius r_{1}
$\sum_{n=0}^{\infty}\left|\frac{x[n]}{r^{n}}\right|$ converges for all points outside a circle of radius r_{2}
$X(z)$ converges for all points within an annular region of the form $r_{2}<r<r_{1}$

- Note: The ROC depends only on r and not on ω.

$$
\left.X(z)\right|_{z=e^{j \omega}}=X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=F\{x[n]\}
$$

- Note: The discrete-time Fourier transform $X\left(e^{j \omega}\right)$ may be viewed as a special case of the z-transform $X(z)$.
- The values of z for which $X(z)=0$ are called zeros of $X(z)$, and the values of z for which $X(z)$ is infinite are known as poles.
- Note: The ROC cannot include any poles.
- For finite duration sequences the ROC is the entire z-plane, with the possible exception of $z=0$ or $z=\infty$.
- For infinite duration sequences the ROC can have one of the following shapes:
- Right-sided $\left(x[n]=0, n<n_{0}\right) \Rightarrow$ ROC: $|z|>r$.
- Left-sided $\left(x[n]=0, n>n_{0}\right) \Rightarrow$ ROC: $|z|<r$.
- Two-sided \Rightarrow ROC: $r_{2}<|z|<r_{1}$.
- Example 1: z-Transform of the unit-impulse

$$
X(z)=Z\{\delta[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[0] z^{0}=1
$$

It converges at every point in the z-plane

- Example 2: z-Transform of a causal exponential signal $x[n]=a^{n} u[n]$

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

converge if: $\left|a z^{-1}\right|<1 \Rightarrow|z|>|a|$
The inverse z-transform

- The recovery of a sequence $x[n]$ from its z-transform ($X(z)$ and ROC) can be formally done using the formula (inverse z-transform):

$$
x[n]=z^{-1}\{X(z)\}=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

where Γ is a counterclockwise closed circular contour centered at the origin and with radius r such that Γ is in the ROC of X.

- We do not usually compute the inverse z-transform using the above equation.
- For rational functions, the inverse z-transform can be more easily computed using partial fraction expansions (PFE).
- Example 3: Finding the inverse z-transform using partial fractions

$$
\begin{gathered}
X(z)=\frac{1+z^{-1}}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)} \\
X(z)=\frac{4}{1-z^{-1}}-\frac{3}{1-0.5 z^{-1}}
\end{gathered}
$$

If ROC: $|z|>1$, both fractions are the z-transform of causal sequences. Hence

$$
x[n]=4 u[n]-3\left(\frac{1}{2}\right)^{n} u[n] \quad \text { causal }
$$

If ROC: $|z|<1 / 2, \quad x[n]=-4 u[-n-1]+3\left(\frac{1}{2}\right)^{n} u[-n-1] \quad$ anticausal If ROC: $1 / 2<|z|<1, \quad x[n]=-4 u[-n-1]-3\left(\frac{1}{2}\right)^{n} u[n] \quad$ noncausal

Properties of z-Transform

Property	$\boldsymbol{x}[\boldsymbol{n}]$	$\boldsymbol{X}(z)$	ROC
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Time shifting	$x[n-k]$	$X(z) z^{-k}$	$R \pm\{0$ or $\infty\}$
Time reversal	$x[-n]$	$X\left(z^{-1}\right)$	R^{-1}
Multiply by exp.	$a^{n} x[n]$	$X(z / a)$	$\|a\| R$
Differentiate in z	$n x[n]$	$-z d X(z) / d z$	R
Convolution	$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Summation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{z}{z-1} X(z)$	$\supset(R \cap(z>1))$

- Example 4: z-Transform of a cosine signal

$$
x[n]=\cos \left(\omega_{0} n\right) u[n]
$$

$$
\cos \left(\omega_{0} n\right) u[n]=\frac{1}{2} e^{j \omega_{0} n} u[n]+\frac{1}{2} e^{-j \omega_{0} n} u[n]
$$

$$
Z\left\{\cos \left(\omega_{0} n\right) u[n]\right\}=\frac{1}{2} Z\left\{e^{j \omega_{0} n} u[n]\right\}+\frac{1}{2} Z\left\{e^{-j \omega_{0} n} u[n]\right\}
$$

$$
=\frac{1 / 2}{1-e^{j \omega_{0}} z^{-1}}+\frac{1 / 2}{1-e^{-j \omega_{0}} z^{-1}}=\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}
$$

ROC is $|z|>1$

- Example 5: z-Transform of a sine signal

$$
x[n]=\sin \left(\omega_{0} n\right) u[n]
$$

$$
\sin \left(\omega_{0} n\right) u[n]=\frac{1}{2 j} e^{j \omega_{0} n} u[n]-\frac{1}{2 j} e^{-j \omega_{0} n} u[n]
$$

$$
\begin{aligned}
& Z\left\{\sin \left(\omega_{0} n\right) u[n]\right\}=\frac{1}{2 j} z\left\{e^{j \omega_{0} n} u[n]\right\}-\frac{1}{2 j} z\left\{e^{-j \omega_{0} n} u[n]\right\} \\
& =\frac{1 / 2 j}{1-e^{j \omega_{0}} z^{-1}}-\frac{1 / 2 j}{1-e^{-j \omega_{0}} z^{-1}}=\frac{\sin \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \quad \text { ROC is }|z|>1
\end{aligned}
$$

- Initial and final value properties of the z-transform applies to causal signals only.

Initial value: $x[0]=\lim _{z \rightarrow \infty} X(z)$
Final value: $\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) X(z)$
3. Transfer function of LTI systems

$$
\begin{array}{l|l|l}
\overrightarrow{x[n]} & \begin{array}{l}
h[n] \\
H(z)
\end{array} & \begin{array}{|l}
Y(n]
\end{array} \\
\underset{X(z)}{H(z)} & y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
Y(z)=X(z) H(z)
\end{array}
$$

- Example 6: Determine the response of a system with impulse response $h[n]=a^{n} u[n],|a|<1$ to the input $x[n]=u[n]$ using the convolution theorem.

$$
\begin{gathered}
H(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\frac{1}{1-a z^{-1}},|z|>|a| \quad \text { and } \quad X(z)=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}},|z|>1 \\
Y(z)=\frac{1}{\left(1-a z^{-1}\right)\left(1-z^{-1}\right)}, \quad|z|>\max \{|a|, 1\}=1 \\
Y(z)=\frac{1}{1-a}\left(\frac{1}{1-z^{-1}}-\frac{1}{1-a z^{-1}}\right), \quad|z|>1 \\
y[n]=\frac{1}{1-a}\left(u[n]-a^{n+1} u[n]\right)=\frac{1-a^{n+1}}{1-a} u[n]
\end{gathered}
$$

which is exactly the steady-state response

Causality and stability

- A TF $H(z)$ with the ROC that is the exterior of a circle, including ∞, is a necessary and sufficient condition for DTLTI system to be causal.
- An LTI system with transfer function $H(z)=N(z) / D(z)$ is causal if and only if: 1. the ROC is $|z|>|p|$, where p is the outermost pole and 2 . $\operatorname{deg} N \leq \operatorname{deg} D$.
- An LTI system is stable if and only if the ROC of $H(z)$ includes the unit circle $|z|=1$.
- A causal LTI system with rational transfer function $H(z)$ is stable if and only if all poles of $H(z)$ are inside the unit circle.
- The conditions for causality and stability are different and that one does not imply the other.
- For example, a causal system may be stable or unstable, just as a noncausal system may be stable or unstable.
- Similarly, an unstable system may be either causal or noncausal, just as a stable system may be causal or noncausal.
- Example 7: A linear time-invariant system is characterized by the transfer function:

$$
H(z)=\frac{1}{2}\left[\frac{z}{z-\frac{3}{2}}-\frac{z}{z+\frac{1}{2}}\right]
$$

If ROC: $|z|>3 / 2$, the system is causal and unstable

$$
h[n]=\frac{1}{2}\left(\frac{3}{2}\right)^{n} u[n]-\frac{1}{2}\left(-\frac{1}{2}\right)^{n} u[n]
$$

If ROC: $1 / 2<|z|<3 / 2$, the system is noncausal and stable

$$
h[n]=-\frac{1}{2}\left(\frac{3}{2}\right)^{n} u[-n-1]-\frac{1}{2}\left(-\frac{1}{2}\right)^{n} u[n]
$$

If $\mathrm{ROC}:|z|<1 / 2$, the system is anticausal and unstable

$$
h[n]=-\frac{1}{2}\left(\frac{3}{2}\right)^{n} u[-n-1]+\frac{1}{2}\left(-\frac{1}{2}\right)^{n} u[-n-1]
$$

Interconnection of two LTI systems
parallel interconnection

cascade interconnection

4. Linear constant-coefficient difference equations

$$
\begin{gathered}
y[n]+\sum_{k=1}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \\
Y(z)+\sum_{k=1}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}=\frac{B(z)}{A(z)}=\frac{b_{0} z^{-M}\left(z^{M}+\cdots+\frac{b_{M}}{b_{0}}\right)}{z^{-N}\left(z^{N}+\cdots+a_{N}\right)} \\
H(z)=b_{0} z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(p-p_{k}\right)}=b_{0} \frac{\prod_{k=1}^{M}\left(1-z_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)}
\end{gathered}
$$

where z_{l} 's are the system zeros and p_{k} 's are the system poles, and b_{0} is a constant gain term.

Impulse response

- The transfer function $H(z)$ with distinct poles can be expressed in the form:

$$
H(z)=\sum_{k=0}^{M-N} C_{k} z^{-k}+\sum_{k=1}^{N} \frac{A_{k}}{1-p_{k} z^{-1}}
$$

where $A_{k}=\left.\left(1-p_{k} z^{-1}\right) X(z)\right|_{z=p_{k}}$
and $C_{k}=0$ when $M<N$, that is, when the rational function $H(z)$ is proper.
If we assume that the system is causal, then the ROC is the exterior of a circle starting at the outermost pole, and the impulse response is:

$$
h[n]=\sum_{k=0}^{M-N} C_{k} \delta[n-k]+\sum_{k=1}^{N} A_{k}\left(p_{k}\right)^{n} u[n]
$$

5. Connections between pole-zero locations and time-domain behavior

The TF $H(z)$ with distinct poles: $H(z)=\sum_{k=0}^{M-N} C_{k} z^{-k}+\sum_{k=1}^{N} \frac{A_{k}}{1-p_{k} z^{-1}}$ where the first summation is included only if $M \geq N$

- The roots of a polynomial with real coefficients either must be real or must occur in complex conjugate pairs.

$$
H(z)=\sum_{k=0}^{M-N} C_{k} z^{-k}+\sum_{k=1}^{K_{1}} \frac{A_{k}}{1-p_{k} z^{-1}}+\sum_{k=1}^{K_{2}} \frac{b_{k 0}+b_{k 1} z^{-1}}{1+a_{k 1} z^{-1}+a_{k 2} z^{-2}}
$$

First-order systems

$$
H(z)=\frac{b}{1-a z^{-1}}, \quad a, b \text { real }
$$

Assuming a causal system, the impulse response is given by the following real exponential sequence: $h[n]=b a^{n} u[n]$

Second-order systems

$$
H(z)=\frac{b_{0}+b_{1} z^{-1}}{1+a_{1} z^{-1}+a_{2} z^{-2}}=\frac{z\left(b_{0} z+b_{1}\right)}{z^{2}+a_{1} z+a_{2}}
$$

There are three possible cases for poles: 1. Real and distinct, 2. Real and equal, 3. Complex conjugate.

The impulse response of a causal system with a pair of complex conjugate poles: $h[n]=2|A| r^{n} \cos \left(\omega_{0} n+\phi\right) u[n]$, where A is the PFE coefficient

Impulse responses associated with real poles in the z-plane

Impulse responses associated with a pair of complex conjugate poles in the z-plane

- Example 8: Given that causal system: $H(z)=\frac{z+1}{z^{2}-0.9 z+0.81}$, find
a. its difference equation representation, and
b. its impulse response representation.
a. $H(z)=\frac{Y(z)}{X(z)}=\frac{z+1}{z^{2}-0.9 z+0.81}=\frac{z^{-1}+z^{-2}}{1-0.9 z^{-1}+0.81 z^{-2}}$

$$
\begin{aligned}
& Y(z)-0.9 z^{-1} Y(z)+0.81 z^{-2} Y(z)=z^{-1} X(z)+z^{-2} X(z) \\
& y[n]-0.9 y[n-1]+0.81 y[n-2]=x[n-1]+x[n-2] \\
& y[n]=0.9 y[n-1]-0.81 y[n-2]+x[n-1]+x[n-2]
\end{aligned}
$$

b. $H(z)=1.2346+\frac{-0.6173+j 0.9979}{1-0.9 e^{-j \pi / 3} z^{-1}}+\frac{-0.6173-j 0.9979}{1-0.9 e^{j \pi / 3} z^{-1}}, \quad|z|>0.9$

From z-transform table:

$$
\begin{aligned}
h[n] & =1.2346 \delta[n]+\left[(-0.6173+j 0.9979) 0.9^{n} e^{-j \pi n / 3}\right. \\
& \left.+(-0.6173-j 0.9979) 0.9^{n} e^{j \pi n / 3}\right] u[n] \\
h[n] & =1.2346 \delta[n]+0.9^{n}[-1.2346 \cos (\pi n / 3)+1.9958 \sin (\pi n / 3)] u[n] \\
h[0] & =0 \Rightarrow h[n]=0.9^{n}[-1.2346 \cos (\pi n / 3)+1.9958 \sin (\pi n / 3)] u[n-1]
\end{aligned}
$$

6. The one-sided z-transform

$$
X^{+}(z)=Z^{+}\{x[n]\}=Z\{x[n] u[n]\}=\sum_{n=0}^{\infty} x[n] z^{-n} \quad \begin{aligned}
& \text { one-sided or } \\
& \text { unilateral z-transform }
\end{aligned}
$$

- Almost all properties we have studied for the two-sided z-transform carry over to the one-sided z-transform with the exception of the time shifting property.

$$
\begin{aligned}
Z^{+}\{x[n-1]\} & =x[-1]+x[0] z^{-1}+x[1] z^{-2}+\cdots=x[-1]+z^{-1}\left(x[0]+x[1] z^{-1}+\cdots\right) \\
& =x[-1]+z^{-1} X^{+}(z)
\end{aligned}
$$

$z^{+}\{x[n-2]\}=x[-2]+x[-1] z^{-1}+z^{-2} X^{+}(z)$
In general, for any $k>0$, we can show that

$$
z^{+}\{x[n-k]\}=z^{-k} X^{+}(z)+\sum_{m=1}^{k} x[-m] z^{m-k}
$$

- This property makes possible the solution of linear constant-coefficient difference equations with nonzero initial conditions.
- Example 9: A linear time-invariant system

$$
\begin{gathered}
y[n]=a y[n-1]+x[n], \quad n \geq 0 \quad \text { with } y[-1] \neq 0 \\
Y^{+}(z)=a y[-1]+a z^{-1} Y^{+}(z)+X^{+}(z) \Rightarrow Y^{+}(z)=\underbrace{\frac{a y[-1]}{1-a z^{-1}}}_{\text {initial condition }}+\underbrace{\frac{1}{1-a z^{-1}} X^{+}(z)}_{z e r o-\text {-state }}
\end{gathered}
$$

If the input $x[n]=0$ for all $n \geq 0$, then: $y_{z i}[n]=a y[-1] a^{n}=y[-1] a^{n+1}, n \geq 0$

If the initial condition is zero then the system is at rest or at zero-state:

$$
Y^{+}(z)=H(z) X^{+}(z), \quad H(z)=\frac{1}{1-a z^{-1}} \text { or } h[n]=a^{n} u[n]
$$

and hence the second term can be identified as the zero-state response $y_{z s}[n]$.
The complete response is given by:

$$
y[n]=y[-1] a^{n+1}+\sum_{k=0}^{n} h[k] x[n-k], \quad n \geq 0
$$

If we set $x[n]=u[n]$

$$
\begin{gathered}
Y^{+}(z)=\frac{a y[-1]}{1-a z^{-1}}+\frac{1}{1-a z^{-1}} \frac{1}{1-z^{-1}}=\frac{a y[-1]}{1-a z^{-1}}+\frac{1 /(1-a)}{1-z^{-1}}-\frac{a /(1-a)}{1-a z^{-1}} \\
y[n]=y[-1] a^{n+1}+\frac{1}{1-a}\left(1-a^{n+1}\right), \quad n \geq 0
\end{gathered}
$$

