Robot Control

Velocity of an axis

Exercises

Test1 22-23 semester 1

Given the velocity profile in the figure beside,

1. Derive the formula for $\boldsymbol{v}_{\boldsymbol{m}}$ as a function of \boldsymbol{t} and $\boldsymbol{S}_{\boldsymbol{C}}$
2. Deduct the formula of the acceleration and the deceleration (as functions of \boldsymbol{t} and $\boldsymbol{S}_{\boldsymbol{C}}$)

Solution

$$
\begin{gathered}
S_{c}=v_{m} \times \frac{2 t}{2}+v_{m} \times 4 t+v_{m} \times \frac{3 t}{2} \\
\Rightarrow v_{m}=\frac{2}{13 t} \times S_{c} \\
a_{c}=\frac{v_{m}}{2 t}=\frac{1}{13 t^{2}} \times S_{c} \\
a_{d}=\frac{-v_{m}}{3 t}=\frac{-2}{39 t^{2}} \times S_{c}
\end{gathered}
$$

حَـامعة
 الْمَـنارة
 Final 2021 semester 2

Given the trapezoidal velocity profile of a motor,

1) Find the velocity $v_{m 1}$ as a function of the distance traveled at point \boldsymbol{C}, and time \boldsymbol{t}.
2) Deduct the acceleration and the decelerations.

Solution

$$
\begin{gathered}
S_{C}=6.125 \times t * v_{m 1} \Rightarrow v_{m 1}=\frac{S_{C}}{6.125 \times t} \\
A_{a 1}=\frac{v_{m 1}}{2 t}=\frac{S_{C}}{12.25 \times t^{2}} \\
A_{d 1}=\frac{\left(v_{m 2}-v_{m 1}\right)}{1.5 t}=\frac{-v_{m 1}}{3 t}=-\frac{S_{C}}{18.375 \times t^{2}} \\
A_{d 2}=\frac{-v_{m 2}}{2.5 t}=\frac{-v_{m 1}}{5 t}=-\frac{S_{C}}{30.625 \times t^{2}}
\end{gathered}
$$

Exercise

Given the trapezoidal velocity profile of a motor, (velocity in CTS/sec)

Plot the position and acceleration profiles.
Note:
The points are (0 ABCDEFS)

Pos

$\mathbf{0}$	0	0
\mathbf{A}	120	15
\mathbf{B}	360	0
\mathbf{C}	540	30
\mathbf{D}	1020	0
\mathbf{E}	1320	-22.5
\mathbf{F}	1380	0
\mathbf{S}	1440	-7.5

Time (seconds)

Thanks

