iz

6)liaJl

L L e T

zoie (gold .o 2 2o £83 2 loc dud>

ddized! aileayl g2t ?‘..\zl.wb Ji¥ ! J=t slemy] Jiluo
9 gzmio Buay aaldd (ASI1 Aagal) ol Gyagall eyl sl S5l o Jolany (Optimization) Jie¥! Je!l slems)
(lez i) Blobus pue 91/ 98lolun JS& e (Constraints 5448) laylgunt Za sl Jsludl sda (655 Lo e

N
Al aanil) diggs
initialization

A8 A
Fitness evaluation

sLY) s
Parents selection

A5 54 9 Sl) gandl

crossover

3 ikl

mutation

https://manara.edu.sy/

https://manara.edu.sy/

80

60
40k

20

20k
40F
80k
80k

-100}
-2

[

6)liaJl

LLLL LR St

Global Maximum|

Local Maximum

Local Maximum

Local Minimum
Global Minimum

Optimization

\' ¢
min f(x)
X
4
Design Variable

Objective Function

<MW § (Constraints) 5448 3923 optimization J! Jiluw J>

min f(x)
X
Linear Constraints

Ax < b
Aggx = beg
b <x<ub

c(x) <0
Ceq(x)=10

Nonlinear Constraints

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

LLLL LR St

Optimtool

4\ Optimization Tool [ESal™ <]

File Help

Problem Setup and Results Options Quick Reference

Lasn.

Population

Solver: | ga - Genetic Algorithm 'I

Fitness scaling Problem Setup and
Problem Results

Selection + Problem

Fitness function: l:l
Mumber of variables: |:|
Constraints:

Linear inequalities: A D bt D
Linear equalities: Aeg: D beq: D

Repraduction » Caonstraints

Mutation

» Run solver and view results

Crossover

J
J
J
J
J
=] Options
Migration J Specify options for the Genetic
J
J
J
J
J
J
J

Algarithm settings Algorithm salver.

Bounds: Lower: D Upper: D Hybrid function » Population
Nanlinear constraint function: Stopping criteria b Fitness scaling

Plot functions

Run solver and view results b Selection
Qutput function
[[] Use randam states from previous run - - + Reproductian
Display to command window
= ¥ Mutation
[Start] ‘ Pause | ‘ Stop ‘ User function evaluation
+ Crossover
Current iteration: l:l Clear Results =
+ Migration
b Algorithm settings

-

Hybrid function

-

Stopping criteria

-

Plot Functions

-

Qutput function

-

Display to command window

-

avw User function evaluation

Final paint: Meore Information _

- b User Guide

Linear Constraints

Ax <b
Linear equalities: Aeq: beq: Aeqx . beq

Constraints:

o

Linear inequalities: A

Bounds: Lower: Upper: Ilb<x<ub

c(x) <0
Ceq x)=0
Nonlinear Constraints

Nonlinear constraint function:

—

Linear Inequalities

5x1 4+ 3x,— x3<52
Bounds 4x, +2x3<0
X2 <8 l —00:s . S~
3<x3 L/ —0o X
o I | B
Lower Upper X3
¢ ¢ ¢
A x <b

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)li_aJl
Example

We want to minimize a simple fitness function of two variables x1 and x2

min f£(x) = 100 * (x1°2 - x2) "2 + (1 - =1)"Z;
p o

such that the following two nonlinear constraints and bounds are satistied

®x1*x2 + 21 - ®2 + 1.5 <=0,

(nonlinear constraint)
10 - =1*x2 <=0, (nonlinear constraint)
0 <= xl1 <= 1, and (bound)
0 <= x2 <= 13 (bound)

function [c, ceq] = simple constraint (x)
c = [1.5 + =z(1)y*x(2) + =(1) - =x(2);
-x(l)*=x(2) + 10];

cedq (17

ObjectiveFunction = @simple fitness;

nvars = 2; % Number of wvariables

IB = [0 0]; % Lower bound

UB = [1 13]; % Upper bound

ConstraintFunction = @simple constraint;

[%x,fval] = ga(ObjectiveFunction,nvars, [],[]1,[]1,[],L1B,UB,

ConstraintFunction)

0.8122 12.3122
fval =
1.3578e+004

iS5)) Bl ol e L g OB 3 putiiea] Bubind] Sliailsil] ool Gpnine o Las
S il S0 Aaual) slmy) (2 L) (1555 Lontie dolieiad (Say

max f(x) = min|—f(x)]

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

31501 Slsaslall e Ao lipucs

Llae ol e Do 350 21l sia 5l ¢ g 2udlyell culiaiylesdd] lides ol (o muudtdl Als pzas o
elLmdz Ml

WL ol 13) Judbg o land) dumyd suzs Q1 (2 ez 28L aladl Jually &55las agugeg,SIl 28LS o)
S el (@ e A8 35y 1B pg509,S01 1 (318 AL Juns Blagsl A Lo pgsgng,S
Adlad Ogus el Alae oaiud (emanll gl Hlias o g 2) late LU ez S 13) LT
AL Jine (0 Tz 20,8 LIS clagangeS dunes 28U 8 e Jguidl goimy U3 e JlieS
eyl 2\.4.”.:;3] Lo :\..DLE_I.A RJSQUJL@
5 4 3 2 1 [aguges SO
100.0751100.215|100.991100.007|100.320| s

-

4L Aey (o 100 Lioyas o1é (Normalization)eaall ayls 8 yslan J s gl (Soy (AUSCEL sda S
lagng o, ST 8L LuSaly At sl ag)le 3 o elam¥] ulee o Lasdls oLl Jpoimell 3 2yl
ol S

Juad 5 4 3 2 1 pggag S

100.3216 | 100.075 | 100.215 [100.991 | 100.007 | 100.320 | &ket Ll

i BLUY 3yl
0.3216 | 0.075 | 0.215 | 0.991 | 0.007 | 0.320 f"’”‘fﬂ-o ’ﬂ

https://manara.edu.sy/

https://manara.edu.sy/

iz

&1 Byalan Al (o of Ltgad 2 Tas Ty a4 5 2L 6 5 L 8 (05 LY 10 Jaas 0 B 281 Lellac)
Aaolio Lalys
ol Calsle (£15 0 5 1da S @ ol
aladl Jaall (o 2ylaze LU IS 095 Y o g0 Jo¥1 -
Sl cyn Loles Leayms 5 6538 lagingagy SIS (e g pgiogagyS (Al ¥ o sa lilly -
(Elitism) 4 g5l
Slogrosay Sl (any smad OF 35lsdl (ye 098 a8 (SIS LIS 2dlysdl wiliniylssd| Gubasaie @
lebeall oo S Algdat Tlas 5l axadl oye Bzl
Byl 2al Jleatanl Sl o gngns, SO Ayl (loss LilSaly (Al sin 3yki 2y @
clibes e sl Lple Babas ooF 095 Jl Jused! J) Bl oy ogag, SO a3 oy daslall sdn 3 @
Slekeadl IS 6,31 lagaogns SII 505 > (3 2ihsll byl
Olals 25185] ope s Jilall LS clinslgsedl Aoy Adlad §8aL3l 2 das LIl sda clole) (0 @

SloguugegySIl &udy e uxly pguwgag,S
3948 3929 po Ji¥! Jeed s lemy) Wluie

Optimization Problem with Constraint

A 35020 ol e Lol (e oS e lis AISS JulaT 3

Constraints

S5em=< dglzcm b<d=12
10<h <20
=>800cm? o
v V(d,h)= Zdzh = 800
o oy LSl Julas QL
[0cm < h < 20ecm : el 2 L
Objective Function

T
S(d,h) = 7d? + ndh

https://manara.edu.sy/

https://manara.edu.sy/

6)liall
Genetic Algorithm and Direct Search Toolbox

The Genetic Algorithm and Direct Search Toolbox is a collection of functions that extend the capabilities
of the Optimization Toolbox and theMATLAB numeric computing environment. The Genetic Algorithm
and Direct Search Toolbox includes routines for solving optimization problems using

* Genetic algorithm

* Direct search

These algorithms enable you to solve a variety of optimization problems that lie outside the scope of the
Optimization Toolbox.

The genetic algorithm uses three main types of rules at each step to create the next generation from the
current population:

* Selection rules select the individuals, called parents, that contribute to the population at the next
generation.

* Crossover rules combine two parents to form children for the next generation.

* Mutation rules apply random changes to individual parents to form children

The genetic algorithm at the command line, call the genetic algorithm function ga with the syntax
[x fval] = ga(@fitnessfun, nvars, options)

where

* @fitnessfun is a handle to the fitness function.

* nvars is the number of independent variables for the fitness function.

* options is a structure containing options for the genetic algorithm. If you do not
pass in this argument, ‘ga’ uses its default options.

The results are given by

* x— Point at which the final value is attained

* fval—Final value of the fitness function

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)li_aJl

A, TR

ga

Find minimum of function using genetic algorithm

Syntax

®x = ga(fitnessicn,nvars)

®x = ga(fitnessfcn,nvars,k, b)

X = ga(fitnessfcn,nvars, ki, b, heqg, beqg)

% = ga(fitnessfcn,nvars, i, b, heq, beqg, LB, UE)

x = ga(fitnessfcn,nvars, A, b, Aeq, beqg, LB, UB, nonleon)

x = ga(fitnessfcn,nvars, i, b, heq, beqg, LB, UB, nonlcon, cptionsa)

x = ga(fitnessfcn,nvars, 2, b, [1,[1,LB,UB,nonlcon, IntCon)

x = ga(fitnessfcn,nvars, i, b, [1,[]1,LB,UB, nonlcon, IntCon, cptions)
X = ga(prokblem)

[®,fval] = ga(fitneasfcn,nvars, ...}

[®,fval,exitflag] = ga(fitnessfcn,nvars,...)

[%,fval,exitflag,output] = ga{fitnessfcn,nvars,...)
[%,fval,exitflag,output, population] = ga(fitnessfcn,nvars,...)
[®,fval,exitflag,output,population, scores] = gal(fitnessfcon, nvara,...)

Genetic Algorithm Optimizations Using the Optimization Tool GUI

To open the Optimization Tool, enter

optimtool ('ga') at the command line, or enter optimtool and then choose ga
from the Solver menu.

https://manara.edu.sy/

https://manara.edu.sy/

2\

6jliall

A, TR

4\ Cptimization Tool lilm
Eile Help
Problem Setup and Results Options Quick Reference <=
o | = stopping criteria]« .
Solver: fmincon - Censtrained nenlinear minimization ~ fmincon Solver
Max iterations: @ Use default: 200 Find a minimum of a constrained
Algorithm: | Trust region reflective = nonlinear multivariable function
Problem <) SresiE Click to expand the section below
Objective function: - Max function evaluations: @ Use default: 100*numberOfVariables corresponding to your task.
. —| | Problem Setup and Results
Derivatives: Approximated by solver - @ Specify: “ || » Solver and Algorithm
Start point: X tolerance: @ Use default: 1e-6 b Problem
© specily F Constraints
be @ Specify:
s # Run solver and view results
Linear inequalities: A b Function tolerance: @ Use default: 1e-6 | options
Linear equalities Aeq beg © Specify: ¥ Stopping criteria
. ¥ Function value check
Bounds Lower Upper Nonlinear constraint tolerance: @ Use default: 1e-6
) ¥ User-supplied derivatives
Menlinear constraint function © Specify: » Appreximated derivatives
Derrvafives A e byisoley SQP constraint tolerance: @ Use default: 1e-6 b Algorithm settings
Run solver and view results S ¥ Inner iteration stopping criteria
» Plot functions
Start Pau Stof Unboundedness threshold: @ Use default: -1e20 » Output function
Current fteration: Clear Results Specify: ¥ Display to command window
| Next Steps
| = Function value check |
« Overview of Mext Steps
[Error if user-supplied function returns Inf, NaM or complex « When the Solver Fails
« When the Solver Might Have
[= User-supplied derivatives] Succeeded
Validate user-supplied derivatives - When the Solver Succeeds
- M Infor ti
Hessian sparsity pattern: @ Use default: sparse(ones(numberOfVariables)) » TJ’:!er Gu‘r;l:a on
Y @ Specify: Eunction equivalent
Final point:
Hessian multiply function: @ Use default: No multiply function
Specify
4 ' | ||[2 Approximated derivatives] il

To use the Optimization Tool, you must first enter the following information:

e Fitness function — The objective function you want to minimize. Enter the fitness function in

the form @ £1tnessfun, where fitnessfun.m is an M-file that computes the fitness

function. The @ sign creates a function handleto £1tnessfun.

e Number of variables — The length of the input vector to the fitness function. you would enter

2.

You can enter constraints or a nonlinear constraint function for the problem in the Constraints pane. If

the problem is unconstrained, leave these fields blank.

To run the genetic algorithm, click the Start button. The tool displays the results of the optimization in the

Run solver and view results pane.

You can change the options for the genetic algorithm in the Options pane. To view the options in one of

the categories listed in the pane, click the + sign next to it.

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)li_aJl

LLLL LR St

Example 1 — Finding the Minimum of the Rastrigin’s Function

This example shows how to find the minimum of Rastrigin's function, a function that is often used to test

the genetic algorithm.
For two independent variables, Rastrigin's function is defined as

Ras(x) = 20 +x%+ x% —10(cos2nx, + cosZmxy)

The toolbox contains an M-file, rastriginsfcn.m, that computes the values of Rastrigin's function. The

following figure shows a plot of Rastrigin's function.

Ghabsal minimums of [00]

As the plot shows, Rastrigin's function has many local minima—the "valleys" in the plot. However, the
function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by the
vertical line in the plot, where the value of the function is 0. At any local minimum other than [0 0], the
value of Rastrigin's function is greater than 0. The farther the local minimum is from the origin, the larger

the value of the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it

difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.

https://manara.edu.sy/

https://manara.edu.sy/

= Local maxima

Laweal minima
.-"'..-..

Glabal minimwem at [0 0]

To find the minimum, do the following steps:

1. Enter gatool at the command line to open the Genetic Algorithm Tool.

2. Enter the following in the Genetic Algorithm Tool:

In the Fitness function field, enter erastriginsfcn.
In the Number of variables field, enter 2, the number of independent variables for

Rastrigin's function.

The Fitness function and Number of variables fields should appear as shown in the

following figure.

Fithess function: |@rastriginsﬂ:n

mHurmber af variakles: |2

3. Click the Start button in the Run solver pane, as shown in the following figure.

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

~Run soker

Ol Ve randonm etates frorm preyiou s rmn

EHHR;J Fausge | Stop |
Current generation: I

While the algorithm is running, the Current generation field displays the number of the current
generation. You can temporarily pause the algorithm by clicking the Pause button. When you do
so, the button name changes to Resume. To resume the algorithm from the point at which you

paused it, click Resume.

When the algorithm is finished, the Status and results pane appears as shown in the following

figure.

The Status and results pane displays the following information:

Statuz and resufts: Clear Status |

IGE running .

I3 terminated.

Fitness functionm walue: 0. 5461846729334883
Pptimization terminated: awerage change in the

Kl | o]

Final poaint:
1 2
0.00215 003266

Kl i

e Thefinal value of the fitness function when the algorithm terminated:

e Function wvalue: 0.5461846729884883

Note that the value shown is very close to the actual minimum value of Rastrigin's

function, which is O.

e The reason the algorithm terminated.

e Optimization terminated:
e average change in the fitness value less than
options.TolFun.

e Thefinal point, which in thisexampleis [0.00218 0.05266].

https://manara.edu.sy/

https://manara.edu.sy/

6)liall
Finding the Minimum from the Command Line

To find the minimum of Rastrigin's function from the command line, enter

[x fval exitflag] = ga(@rastriginsfcn, 2)

This returns

Optimization terminated:
average change in the fitness value less than options.TolFun.

X =

0.0229 0.0106

fval =

0.1258

exitflag =

1

where

e xisthefinal pointreturned by the algorithm.
e fval isthefitness function value at the final point.

e exitflag isintegervalue corresponding to the reason that the algorithm terminated.
Displaying Plots

The Plots pane enables you to display various plots that provide information about the genetic algorithm
while itis running. This information can help you change options to improve the performance of the
algorithm. For example, to plot the best and mean values of the fitness function at each generation, select

the box next to Best fitness, as shown in the following figure.

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

A, TR

-~ Floks
Piot intervat i
¥ Best finess ™ Best indhvidual ™ Distance
[Expectation [Genasogy I Range
I Score dversity [Scores I Ssction
™ Stopping [™ e corsdrairt
I~ custom function: |

When you click Start, the Genetic Algorithm Tool displays a plot of the best and mean values of the
fitness function at each generation. When the algorithm stops, the plot appears as shown in the following

figure.

Eest: 0.001522 Mean: 0.350939

=

* Bl Mness
* Moan TRess

- — — —
kd e o [=+]
®

Fitness valug
=
=
L
.

.
L
.
*a
-
1]

. . l".. o+
o)))) . . PO s |
10 20 30 40 50 60 70 5 1] 90 100
step Ganaration

The points at the bottom of the plot denote the best fitness values, while the points above them denote
the averages of the fitness values in each generation. The plot also displays the best and mean values in

the current generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you can change the scaling of

the y-axis in the plot to logarithmic scaling. To do so,

1. Select Axes Properties from the Edit menu in the plot window to open the Property Editor

attached to your figure window as shown below.

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

Property Editor - Axes x
Tte: Bect 014z Men 2] xAds ¥ A | Zaxis | Fort] Inspector.. |

..."..L.........l _"lll W Labeat: km&ss walug Ticks... |
Colors: ME:J ¥ Limitz: 0.1 to 100 ¥ Butd

et I XTI %l Iz vsmhclbng jrm

I~ Box

Click the Y tab.

In the Scale pane, select Log.
The plot now appears as shown in the following figure.

. Bast: 0.0067796 Mean: 0.014788
10° ¢

[ETTE TR

aEdEEE

L TR TELEY

i U'- 1 1 1 1 1 1 1

stop 10 20 a0 40 50 B0 70 B0 a0 100
generation

Typically, the best fitness value improves rapidly in the early generations, when the individuals
are farther from the optimum. The best fitness value improves more slowly in later generations,

whose populations are closer to the optimal point.

https://manara.edu.sy/

https://manara.edu.sy/

iz

Example2—— Minimizing a Function Using the Genetic Algorithm

Here we want to minimize a simple function of two variables

min f(x) = 100 * (x(1)"2 - x(2)) "2 + (1 - x(1))"2;

X

Coding the Fitness Function

We create an M-file named simple_fitness.m with the following code in it:

function y = simple fitness (x)
y = 100 * (x(1)"2 - x(2)) "2 + (1 - x(1))"2;

The Genetic Algorithm solver assumes the fitness function will take one input x where x is a row vector
with as many elements as number of variables in the problem. The fitness function computes the value of

the function and returns that scalar value in its one return argument y.
Minimizing Using GA

To minimize our fitness function using the GA function, we need to pass in a function handle to the fitness

function as well as specifying the number of variables in the problem.

FitnessFunction = (@simple fitness;

numberOfVariables = 2;

[x,fval] = ga(FitnessFunction,numberOfVariables)
Optimization terminated: average change in the fitness value
less than options.TolFun.

X =

0.9652 0.9340

fval =

0.0017

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

The x returned by the solver is the best point in the final population computed by GA. The fval is the value

of the function @simple_fitness evaluated at the point x.

Constrained Minimization Using the Genetic Algorithm

We want to minimize a simple fitness function of two variables x1 and x2

min f(x) = 100 * (x1°"2 - x2) "2 + (1 - x1)"2;
X

such that the following two nonlinear constraints and bounds are satisfied

x1*x2 + x1 - x2 + 1.5 <=0, (nonlinear constraint)
10 - x1*x2 <=0, (nonlinear constraint)
0 <= x1 <=1, and (bound)
0 <= x2 <= 13 (bound)

Coding the Fitness Function
We create an M-file named simple_fitness.m with the following code in it:

function y = simple fitness(x)
y = 100 * (x(1)"2 - x(2)) "2 + (1 - x(1))"2;

The Genetic Algorithm (GA) function assumes the fitness function will take one input x where x has as
many elements as number of variables in the problem. The fitness function computes the value of the

function and returns that scalar value in its one return argument y.
Coding the Constraint Function

We create an M-file named simple_constraint.m with the following code in it:

function [c, ceq] = simple constraint (x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 107;

ceq = [];

https://manara.edu.sy/

https://manara.edu.sy/

deola
ojliaJl
The GA function assumes the constraint function will take one input x where x has as many elements as

number of variables in the problem. The constraint function computes the values of all the inequality and

equality constraints and returns two vectors c and ceq respectively.
Minimizing Using GA

To minimize our fitness function using the GA function, we need to pass in a function handle to the fitness
function as well as specifying the number of variables as the second argument. Lower and upper bounds
are provided as LB and UB respectively. In addition, we also need to pass in a function handle to the
nonlinear constraint function.

ObjectiveFunction = @simple fitness;

[e)

nvars = 2; % Number of variables
IB = [0 O]; % Lower bound
UB = [1 13]; % Upper bound
ConstraintFunction = @simple constraint;
[x,fval] = ga(ObjectiveFunction,nvars, [],![],![],![],LB,URB,
ConstraintFunction)
Optimization terminated: average change in the fitness value
less than options.TolFun
and constraint violation 1is less than options.TolCon.

0.8122 12.3122

fval =

1.3578e+004

Note that for our constrained minimization problem, the GA function changed the mutation function to
@mutationadaptfeasible. The default mutation function, @mutationgaussian, is only appropriate for

unconstrained minimization problems.
GA Operators for Constrained Minimization

The GA solver handles linear constraints and bounds differently from nonlinear constraints. All the linear
constraints and bounds are satisfied throughout the optimization. However, GA may not satisfy all the
nonlinear constraints at every generation. If GA converges to a solution, the nonlinear constraints will be

satisfied at that solution.

https://manara.edu.sy/

https://manara.edu.sy/

A
deola
0)liodl

GA uses the mutation and crossover functions to produce new individuals at every generation. The way
the GA satisfies the linear and bound constraints is to use mutation and crossover functions that only
generate feasible points. For example, in the previous call to GA, the default mutation function
MUTATIONGAUSSIAN will not satisfy the linear constraints and so the MUTATIONADAPTFEASIBLE is
used instead. If you provide a custom mutation function, this custom function must only generate points
that are feasible with respect to the linear and bound constraints. All the crossover functions in the

toolbox generate points that satisfy the linear constraints and bounds.

We specify MUTATIONADAPTFEASIBLE as the mutation function for our minimization problem by using
GAOPTIMSET function.

options = gaoptimset ('MutationFcn', @mutationadaptfeasible);

[e)

3 Next we run the GA solver.

[x,fval] = ga(ObjectiveFunction,nvars, [],![],![],![],LB,URB,
ConstraintFunction, options)

Optimization terminated: average change in the fitness value

less than options.TolFun

and constraint violation is less than options.TolCon.

0.8122 12.3122

fval =

1.3578e+004

Adding Visualization

Next we use GAOPTIMSET to create an options structure to select two plot functions. The first plot
function is GAPLOTBESTF, which plots the best and mean score of the population at every generation.
The second plot function is GAPLOTMAXCONSTR, which plots the maximum constraint violation of
nonlinear constraints at every generation. We can also visualize the progress of the algorithm by

displaying information to the command window using the 'Display’ option.

options =
gaoptimset (options, '"PlotFcns', {@gaplotbestf, dgaplotmaxconstr},

'Display', 'iter');

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liall
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars, [],![],![],![],LB,URB,
ConstraintFunction, options)
Best max Stall
Generation f-count f(x) constraint Generations
1 1080 13596.7 0 0
2 2136 13578.2 0 0
3 3188 13578.2 5.258e-012 0

Optimization terminated: average change in the fitness value
less than options.TolFun
and constraint violation is less than options.TolCon.

0.8122 12.3122

fval =

1.3578e+004

Best: 13575.8745 Mean: 13576.3968

15000
** + Best fitness
z 10000 + Mean ftness
z
ol
o
[ak)
£ 000+
i
*
0 hd]]]]]]]]

1]
] 10 20 30 40 a0 B0 70 20 a0 100
Zeneration

hax constraint: 5.258e-012
104

T

Max constraint
]
1

1 Lowse L L L L L I
a 10 20 Gl 40 Al alll 70 80 H0 100

Stop | Pause | Generation

Providing a Start Point

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

A start point for the minimization can be provided to GA function by specifying the InitialPopulation
option. The GA function will use the first individual from InitialPopulation as a start point for a

constrained minimization.

X0 = [0.5 0.5]; % Start point (row wvector)
options = gaoptimset (options, 'InitialPopulation',X0);
% Next we run the GA solver.
[x,fval] = ga(ObjectiveFunction,nvars, [],![],![],![],LB,URB,
ConstraintFunction, options)
Best max Stall
Generation f-count f (%) constraint Generations
1 1084 13578.4 0 0
2 2140 13578.2 0 0
3 3192 13578.2 2.692e-011 0

Optimization terminated: average change in the fitness value
less than options.TolFun

and constraint violation is less than options.TolCon.

0.8122 12.3122

fval =

1.3578e+004

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

Best: 13575.7313 Mean: 135763465

15000
+ + Best fitness
z +* Mean finess
= 10000 -
=
o
o
[ak]
£ 5000+
L
*
] * 1 1 1 1 1 1 1 1 1 1
1] 10 20 30 40 a0 G0 70 a0 a0 100
Generation
Max constraint: 2.6921e-011
10
E
=
W
S 5f
[
s
(1]
=
[Less 1 1 1 1 1 1 1 1 1 I
] 10 20 a0 40 S0 B0 70 a0 a0 100
Stop | Pauze | Zeneration

Genetic Algorithm Options

This is a demonstration of how to create and manage options for the genetic algorithm function GA using

GAOPTIMSET in the Genetic Algorithm and Direct Search Toolbox.

Setting Up a Problem for GA

GA searches for a minimum of a function using the genetic algorithm. For this demo we will use GA to

minimize the fitness function SHUFCN. SHUFCN is a real valued function of two variables.

We can use the function PLOTOBJECTIVE in the toolbox to plot the function SHUFCN over

the range = [-2 2;-2 2].

plotobjective (@shufcn, [-2 2;

-2 2]1);

https://manara.edu.sy/

https://manara.edu.sy/

To use the GA solver, we need to provide at least two input arguments, a fitness function and the number
of variables in the problem. The first two output arguments returned by GA are x, the best point found,
and Fval, the function value at the best point. A third output argument, exitFlag tells you the reason why
GA stopped. GA can also return a fourth argument, Output, which contains information about the

performance of the solver.

FitnessFunction = @shufcn;
numberOfVariables = 2;

Run the GA solver.

[x,Fval,exitFlag,Output] =
ga (FitnessFunction, numberOfVariables) ;

fprintf ('The number of generations was : %d\n',
Output.generations);

fprintf ('The number of function evaluations was : %d\n',
Output. funccount) ;

fprintf ('The best function value found was : %g\n', Fval);
Optimization terminated: average change in the fitness value
less than options.TolFun.

https://manara.edu.sy/

https://manara.edu.sy/

A
d2ola
6)tioJl

The number of generations was : 51
The number of function evaluations was : 1040
The best function value found was : -185.379

Note that when you run this demo, your result may be different from the results shown; This will be

explained in a section later in this demo.
How the Genetic Algorithm Works

The Genetic Algorithm (GA) works on a population using a set of operators that are applied to the
population. A population is a set of points in the design space. The initial population is generated
randomly by default. The next generation of the population is computed using the fitness of the

individuals in the current generation.
Adding Visualization

GA can accept one or more plot functions through an OPTIONS argument. This feature is useful for
visualizing the performance of the solver at run time. Plot functions can be selected using GAOPTIMSET.

The help for GAOPTIMSET contains a list of plot functions to choose from.

Here we use GAOPTIMSET to create an options structure to select two plot functions. The first plot
function is GAPLOTBESTF, which plots the best and mean score of the population at every generation.

The second plot function is GAPLOTSTOPPING, which plots the percentage of stopping criteria satisfied.
opts = gaoptimset ('PlotFcns', {dgaplotbestf,@gaplotstopping}) ;
Run the GA solver.

[x,Fval,exitFlag,Output] =

ga (FitnessFunction, numberOfVariables, opts) ;

Optimization terminated: average change in the fitness value
less than options.TolFun.

https://manara.edu.sy/

https://manara.edu.sy/

2\
"
6jliall

Best: -186.3226 Mean; -135.119

100
+ Best fitness
z 0 + Mean fitness
—_— -
[u:d 13‘- -
= b
.

E * +¢ ‘:’ ~+ﬂ* R
o kadasa dE LAC W * o Ty PN *
= 100 v * * et T, *+¢#+ wt
L * + *,

_:2|:||:| WMWW | | | L |
a 10 20 30 40 a0 a1l 70 80 0 100

Seneration
stopping Criteria

Stall (T) .

stall () || .

Tirme | -

Generation -

1 1 1 1 1 1 1 1 1
] 10 20 30 40 a0 B0 70 20 a0 100
Stop | Pauze | % of criteria met

Specifying Population Options

The default initial population is created using a uniform random number generator. Default values for the

population size and the range of the initial population are used to create the initial population.
Specify a population size

The default population size used by GA is 20. This may not be sufficient for problems with a large number
of variables; a smaller population size may be sufficient for smaller problems. Since we only have two
variables, we specify a population size of 10. We will pass our options structure 'opts’, created above, to

GAOPTIMSET to modify the value of the parameter 'PopulationSize' to be 10.
opts = gaoptimset (opts, 'PopulationSize',10);

Specify initial population range

https://manara.edu.sy/

https://manara.edu.sy/

A
d2ola
6)tioJl

The initial population is generated using a uniform random number generator in a default range of [0;1].
This creates an initial population where all the points are in the range O to 1. For example, a population of

size 3 in a problem with two variables could look like:

Population = rand(3,2)

Population =
0.1481 0.8734
0.4835 0.6256
0.2772 0.5116

The initial range can be set by changing the 'PoplnitRange’ option using GAOPTIMSET. The range must be
a matrix with two rows. If the range has only one column, i.e., itis 2-by-1, then the range of every variable
is the given range. For example, if we set the range to [-1; 1], then the initial range for both our variables is
-1to 1. To specify a different initial range for each variable, the range must be specified as a matrix with
two rows and ‘numberOfVariables' columns. For example if we set the range to [-1 0; 1 2], then the first
variable will be in the range -1 to 1, and the second variable will be in the range 0 to 2 (so each column

corresponds to a variable).

The initial range can be specified using GAOPTIMSET. We will pass our options structure 'opts’ created

above to GAOPTIMSET to modify the value of the parameter 'PoplnitRange’.
opts = gaoptimset (opts, 'PopInitRange', [-1 0;1 21);
Run the GA solver.

[x,Fval,exitFlag,Output] =
ga (FitnessFunction, numberOfVariables, [1,[1,[1],
(1,01,01,[],0pts);

fprintf ('The number of generations was : %d\n',
Output.generations) ;

fprintf ('The number of function evaluations was : %d\n',
Output. funccount) ;

fprintf ('The best function value found was : %g\n', Fval);
Optimization terminated: average change in the fitness value
less than options.TolFun.

The number of generations was : 65

The number of function evaluations was : 660

The best function value found was : -185.421

https://manara.edu.sy/

https://manara.edu.sy/

2\
"
6jliall

Best: -185.4214 Mean: -139.0031

Of .. .
‘h’::*’f e *'%:":* + Best fitness
f A, * *
I e N * + Mean ftness
E :‘,"*4»:«:“’ A
w100 f - o o
[ak]
IS ow,
w 180+ -
A
_:2':":' 1 1 1 1 1 1 1 1 1]
] 10 20 a0 40 a0 &0 70 20 a0 100
Generation
stopping Criteria
Stall (T -
stall () | -
Tirme | -
Generation -
1 1 1 1 1 1

1 1 1
] 10 20 30 40 a0 B0 70 20 a0 100
Stop | Pauze | % of criteria met

Modifying the Stopping Criteria

GA uses four different criteria to determine when to stop the solver. GA stops when the maximum
number of generations is reached; by default this number is 100. GA also detects if there is no change in
the best fitness value for some time given in seconds (stall time limit), or for some number of generations
(stall generation limit). Another criteria is the maximum time limit in seconds. Here we modify the
stopping criteria to increase the maximum number of generations to 150 and the stall generations limit to

100.

opts = gaoptimset (opts, 'Generations', 150, 'StallGenLimit',
100) ;

Run the GA solver again.

[x,Fval,exitFlag,Output] =
ga (FitnessFunction, numberOfVariables, [1,[1, 11,
(1,01,0],[],0pts);

fprintf ('The number of generations was : %d\n',
Output.generations);

https://manara.edu.sy/

https://manara.edu.sy/

\7
n
6)liall

fprintf ('The number of function evaluations was : %d\n',
Output. funccount) ;

fprintf ('The best function value found was : %g\n', Fval);
Optimization terminated: average change in the fitness value
less than options.TolFun.

The number of generations was : 101

The number of function evaluations was : 1020

The best function value found was : -185.592

Best: -185.5921 Mean: -131.085

D*;+
g + Best fitness
1“~ +
o A0F '# : ':f* + > . + Mean fitness
™ - L .t + +
E 100 F B PR L 1*%: Al *w::’ T *::
*,
E et : A : . ¥ "t
i -180F s . e
iisinleleiuisisiebisieloial-
-2':":' 1 1]
] a0 100 1680
Generation
Stopping Criteria
Stall (M .
stall () [.
Tirme | -
Seneration -
1 1 1 1 1 1 1 1 1
] 10 20 30 40 a0 B0 70 g0 a0 100
Stop | Pause | % of criteria met
Choosing GA Operators

GA starts with a random set of points in the population and uses operators to produce the next generation
of the population. The different operators are scaling, selection, crossover, and mutation. The toolbox
provides several functions to choose from for each operator. Here we choose FITSCALINGPROP for

‘FitnessScalingFcn' and SELECTIONTOURNAMENT for 'SelectionFen'.

opts = gaoptimset ('SelectionFcn', @selectiontournament,
'FitnessScalingFcn',@fitscalingprop);

Run the GA solver.

https://manara.edu.sy/

https://manara.edu.sy/

iz

[x,Fval,exitFlag,Output] =
ga (FitnessFunction, numberOfVariables, [1,[1, 1,
(1,01,0]1,[],0pts);

fprintf ('The number of generations was : %d\n',
Output.generations);

fprintf ('The number of function evaluations was : %d\n',
Output. funccount) ;

fprintf ('The best function value found was : %g\n', Fval);

Optimization terminated: average change in the fitness value
less than options.TolFun.

The number of generations was : 51
The number of function evaluations was : 1040
The best function value found was : -179.02

The best function value may improve or it may get worse by choosing different operators. Choosing a
good set of operators for your problem is often best done by experimentation. The OPTIMTOOL provides
a wonderful environment for easily experimenting with different options and then trying them out by

running the GA solver.

https://manara.edu.sy/

https://manara.edu.sy/

