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Chapter 5

Transform analysis of LTI systems
1.  Sinusoidal response of LTI systems

2. Fourier representation of continuous-time signals

3.  Distortion of signals passing through LTI systems

4.  Ideal and practical filters

5.  Frequency response for rational transfer functions

6. Allpass systems

7. Invertibility and minimum-phase systems
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1. Sinusoidal response of LTI systems
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▪ Eigenfunctions of LTI systems If the system is stable, the ROC of H(z) 
contains the unit circle. In this case, and for z = ejw, the result is:
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The complex exponentials are the only eigenfunctions of LTI systems. Thus:
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▪ Therefore, the response of a stable LTI system to a complex exponential 

sequence is a complex exponential sequence with the same frequency; only 

the amplitude and phase are changed by the system.

Sinusoidal response of real LTI systems Suppose that the input is a real 

sinusoidal sequence

[ ] cos( ) [ ] [ ]1 22 2
x xj jj n j nx x

x x

A A
x n A n e e e e x n x n w ww  − −= + = + = +
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If we assume that the impulse response h[n] is real-valued, we have |H(e−jw)| = 

|H(ejw)| and ∠H(e−jw) = − ∠H(ejw). Hence:
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[ ] | ( )|cos[ ( )] cos( )j j
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▪ Note: The quantity |H(ejw)| is known as the magnitude response or gain of the 

system, and y is called the phase response of the system.

▪ Example 1: A stable system described by the first-order difference equation

[ ] [ ] [ ],1 1 1y n ay n bx n a= − + −  

The frequency response function is: ( )
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Figure below shows plots of magnitude and phase response functions for 

a = 0.8 and an input–output pair for the frequency w0= 2p/20. (x[n] = cos(0.1pn))
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Continuous and principal phase 

functions The phase angle of any 

complex number is not uniquely 

defined, since any integer multiple of 

2p can be added. 

When the phase is numerically 

computed with the use of an 

arctangent subroutine, the principal 

value is typically obtained. 

We will denote the principal value of 

the phase of H(ejw) as Arg[H(ejw)],

where −p  Arg[H(ejw)] ≤ p.
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Steady-state and transient response The eigenfunction property holds if the 

input sequence x[n] is a complex exponential and sinusoidal that exists over the 

entire interval −∞  n  ∞. In such a case, the response that we observe at the 

output of the LTI system is the steady-state response. There is no transient 

response in this case.

▪ However, in practice every input starts at a finite time. Consider a complex 

exponential starting at time n = 0, that is, x[n] = ejwnu[n], the response of a 

causal system to the causal input x[n] is:

▪ If the phase response exceeds the limits of (−p .. p], the function Arg [H(ejw)] is 

discontinuous. We refer to Arg[H(ejw)] as the “wrapped” phase.

▪ The continuous (unwrapped) phase function is denoted as Y(w) or arg [H(ejw)]. 

∠H(ejw) is used to denote the phase response function of a system, in general.
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▪ Note: In practice, the eigenfunction property holds after the transient response 

has diminished.
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The system is BIBO stable if |a|  1. The two terms involving an+1 → 0 as n → ∞.
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Now, let the input to the system is the complex exponential x[n] = Aejwn, n ≥ 0
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▪ Example 2: A stable system described by the first-order difference equation

[ ] [ ] [ ]1y n ay n x n= − +

This system’s response to any input x[n] applied at n = 0 is given as:
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▪ Example 3: Acausal and stable system described by the first-order difference 

equation: y[n] = 0.8y[n − 1] + x[n].

The response y[n] of the system to 

the input: x[n] = cos(0.05pn)u[n]:
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2. Response of LTI systems in the frequency domain

Response to periodic inputs

▪ Consider a periodic input x[n] = x[n + N] with fundamental period N. Then x[n]

can be expressed as a sum of complex exponentials using the IDTFS:
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Therefore, the response of an LTI system to a periodic input sequence is a 

periodic sequence with the same fundamental period.
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▪ Example 4: Zero-state and steady-state responses

[ ] [ ] [ ], [ ]0 9 1 0 1 1 0. .y n y n x n y= − + − =

,
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,
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n
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The system is excited by a periodic 

sequence, with N = 10, given by:
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Response to aperiodic inputs

▪ The convolution theorem provides the desired frequency-domain relationship 

for determining the output of an LTI system to an aperiodic finite-energy 

signal. Y(ejw) = H(ejw)X(ejw)

▪ A finite-energy aperiodic signal contains a continuum of frequency 

components.

▪ The LTI system, through its frequency response function, attenuates some 

frequency components of the input signal and amplifies others.

▪ If the input signal spectrum is changed by the system in an undesirable way, 

we say that the system has caused magnitude and phase distortion.

▪ The output of a linear time-invariant system cannot contain frequency 

components that are not contained in the input signal.
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▪ It takes either a linear time-variant system or a nonlinear system to create 

frequency components that are not necessarily contained in the input signal.

▪ Figure below illustrates the time-domain and frequency-domain relationships 

that can be used in the analysis of BIBO-stable LTI systems.
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3. Distortion of signals passing through LTI systems

Distortionless response systems A system has distortionless response if the 

input signal x[n] and the output signal y[n] have the same “shape.” This is 

possible if x[n] and y[n] satisfy the condition: y[n] = Gx[n − nd], G > 0

LTI system
h[n], H(ejw)

x[n]

X(ejw)

y[n] = x[n] ∗ h[n]

Y(ejw) = X(ejw)H(ejw)
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where G and nd are constants
( )

( ) ( ) ( )
( )

d d

j
j n j nj j j

j

Y e
Y e Ge X e H e Ge
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w
w ww w w

w

− −
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▪ For a LTI system to have a distortionless response, the magnitude response 

|H(ejw)| must be a constant and the phase response ∠H(ejw) must be a linear 

function of w (pass through the origin w = 0) with slope −nd, where nd is the 

delay of the output with respect to the input.

Magnitude distortion A system introduces magnitude distortion if |H(ejw)|  G.

▪ Note: Systems without magnitude distortion are known as allpass systems.

Phase or delay distortion If the phase response is not a linear function of 

frequency, that is, ∠H(ejw)  −wnd.
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Group delay A convenient way to check the linearity of phase response is to use 

the group delay, defined as the negative of the slope of the phase as follows:

( )
( )gd

d

d

w
 w

w

Y
= −

▪ We interpret gd(w) as the time delay that a signal component of frequency w 

undergoes as it passes from the input to the output of the system.

▪ Note that when Y(w) = −wnd is linear, gd(w) = nd = constant. In this case all 

frequency components of the input signal undergo the same time delay.

▪ The derivative in this definition requires that the phase response is a 

continuous function of frequency. Therefore, to compute the group delay, we 

should use the unwrapped phase response Y(w).

▪ Note: The derivative of the phase with respect to w has the units of delay.
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4. Ideal and practical filters
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▪ These ideal filters have a constant-gain passband characteristic and zero gain 

in their stopband, and a linear phase response.

▪ The parameters wl and wu, which specify the end points of the passband, are 

called the lower and upper cutoff frequencies.

▪ Filters are usually classified according to their frequency-domain 

characteristics as lowpass, highpass, bandpass, and bandstop filters.

▪ An ideal lowpass filter with wl = 0, whereas an ideal highpass filter has wu = p.

For example, an ideal lowpass filter (LPF) with linear phase is defined by:

,
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dj n
j c u
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c

e
H e

w
w w w w

w w p

−  =
= 

 

sin ( )
[ ]

( )

c d
lp

d

n n
h n

n n

w

p

−
=

−

▪ The bandwidth of the filter, defined as the width of the passband: Dw = wu − wl.
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The step response 
of the LPF

The impulse response 
of the LPF

▪ The impulse response and the step response of the ideal lowpass filter are 

illustrated in the figure below for nd = 0. (hlp[n] extends from −∞ to ∞)

▪ The impulse response hlp[n] has a DTFT Hlp(ejw) because it has finite energy. 

However, hlp[n] is not absolutely summable, that is,                           .[ ]lpn
h n



=−
= 

▪ Therefore, the LPF is unstable. Furthermore, since r−nhlp[n] is not absolutely 

summable for any value of r, the sequence hlp[n] does not have a z-transform. 

In conclusion, the ideal lowpass filter is unstable and practically unrealizable.
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▪ The impulse response of the ideal bandpass filter can be obtained by 

modulating the impulse response of an ideal lowpass filter with wc = (wu − wl)/2 

= Dw/2 using a carrier with frequency w0 = (wu + wl)/2. The result is:

sin ( )
[ ] cos

( )
02 c d

lp
d

n n
h n n

n n

w
w

p

−
=

−

▪ The impulse responses of the ideal highpass and bandstop filters are given by:

hhp[n] = d[n] − hlp[n], hbs[n] = d[n] − hbp[n],

▪ Note: all ideal filters are unstable and unrealizable. Since all ideal filters can 

be expressed in terms of ideal lowpass filter Hlp(ejw) referred as prototype filter.

▪ Note: The existence of the DTFT does not always imply the existence of the 

z-transform.
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▪ Since ideal filters are not realizable in practice, they must be approximated by 

practical (nonideal) filters. This is usually done by minimizing some 

approximation error between the nonideal filter and a prototype ideal filter.

Typical characteristics of a practical bandpass filter

▪ A natural question: how to evaluate the quality of a practical filter.

▪ A good filter should have only a small ripple in the passband, high attenuation

 in the stopband, and very narrow 

transition bands. 

▪ In some applications, the 

specifications of phase or 

time-domain characteristics (for 

ex., the overshoot of the step 

response) are also important.
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5. Frequency response for rational transfer functions
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For a stable system, the system function converges on the unit circle.
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Each of these first-order terms can be expressed as C(w) = (1 − aejbe−jw).
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Figure below shows the pole-zero plot, the magnitude response, the phase 

response (principal value and continuous function), and the group delay of the 

system:

( )
1 2 3

1 2 3

1 1 655 1 665

1 1 57 1 264 0 4

. .
. . .

z z z
H z

z z z

− − −

− − −

+ + +
=

− + −

The principal phase value jumps by a 

multiple of 2p when |Y(w)| > p. This 

explains the 2p jumps at the first and 

last discontinuities. The remaining 

three discontinuities of size p result 

from sign reversals due to the real 

zero at w = p and the complex 

conjugate zeros at w = ±3p/5.
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6. Allpass systems

▪ The frequency response of an allpass system has constant magnitude (G > 0) 

at all frequencies, that is, |H(ejw)| = G.

▪ The simplest allpass systems simply scale and delay the input signal: 

Hap(z) = Gz−k.

▪ A non-trivial family of allpass systems (dispersive allpass systems) can be 

obtained by noting that (1 − pke−jw) and its complex conjugate               have 

the same magnitude.
( )

1
1

1 1

1

1 1
k k

k
k k

p z z p
H z z

p z p z

 − 
−

− −

− −
= =

− −

▪ Note: The term z−1, has been introduced to make the system causal.

▪ Higher order allpass systems can be obtained by cascading multiple first-

order sections, as:

( )1 j
kp e

w−
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N
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b

− 

−
=

−
=

−
 where b is a constant (usually b = 0).

▪ Note: Parallel connection of allpass systems is, in general, not allpass. For 

ex., the systems H1(z) = 1 and H2(z) = z−1 are allpass but H(z) = H1(z) + H2(z) = 

1 + z−1 is not allpass because |H(ejw)| = 2cos(w/2).

▪ We note that each pole pk of an allpass system should be accompanied by a 

complex reciprocal zero . 

▪ Since causal and stable allpass systems must have all poles inside the unit 

circle, all zeros are outside the unit circle.

/1 kp


▪ The magnitude, phase, and group-delay responses of a first-order allpass 

system with                , are given by:kj
k kp r e 

=
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pk = 0.8ejp/4

p = 0.8 (solid line), p = −0.8 (dashed line)

For a causal and stable system, 

rk  1 ⇒ k(w) ≥ 0.
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▪ A system function of a second-order allpass system, with b = 0 and N = 2, can 

be expressed as:
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+ +

+ +
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where a1 = −(p1 + p2) and a2 = p1p2.

pk = 0.8e±jp/4

▪ Note: For real and complex conjugate 

poles, the phase response has odd 

symmetry about w = 0 and the group 

delay has even symmetry about w = 0.
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7. Invertibility and minimum-phase systems

▪ An LTI system H(z) with input x[n] and output y[n] is said to be invertible if we 

can uniquely determine x[n] from y[n]. 

▪ The system Hi(z) that produces x[n] when excited by y[n] is called the inverse 

system. h[n] ∗ hi[n] = d[n] ⇒ H(z)Hi(z) = 1

For rational system function: 
( )

( )
( ) ( )

1
i

A z
H z

H z B z
= =

▪ Example 5: Inverse system

Determine the inverse of the system with impulse response ( )[ ] [ ]1
2
n

h n u n=

( ) , ROC: 11
2

1 1
21

H z z
z −

= >
−

This system is both causal and stable

( ) [ ] [ ] [ ]11 1
2 21 1i iH z z h n n nd d−= −  = − −
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▪ A causal and stable system H(z) should have its poles inside the unit circle; its 

zeros can be anywhere.

▪ A causal and stable LTI system with a causal and stable inverse is known as a 

minimum-phase system.

▪ Example 6: Inverse system

Determine the inverse of the system with

( ) , ROC: ( )11
2 1 11

22

1
1 0

1i
z

H z z z H z
zz

−

−
= − >  = =

−−

This system is both causal and stable

[ ] [ ] [ ]1
2 1h n n nd d= − −

Two possible ROCs

( )[ ] [ ]1 1
2 2

n
iz h n u n>  =

( )[ ] [ ]1 1
2 2 1

n
iz h n u n  = − − − This system is anticausal and unstable

Minimum-Phase, Maximum-Phase, and Mixed-Phase Systems
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▪ Thus, the impulse response sequences h[n] and hi[n] should be causal and 

absolutely summable. Sometimes, to allow for poles or zeros on the unit 

circle, we only require for the impulse responses to have finite energy.

▪ A rational system is minimum-phase if both its poles and zeros are inside the 

unit circle.

Minimum phase and allpass decomposition We shall now show that any system 

with a rational transfer function can be decomposed into a minimum-phase 

system and an allpass system.

▪ We demonstrate the validity of this assertion for the class of causal and stable 

systems.

▪ Suppose that H(z) has one zero          , where |a|  1 outside the unit circle, 

and all other poles and zeros are inside the unit circle. Then:

/1z a=
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( )( ) ( )
1

1
1 11

1

z a
H z H z az

az

− 
−

−

−
= −

−

where H1(z)(1 − az−1) is minimum phase and                               is allpass( )/( )1 11z a az−  −− −

▪ If we repeat this process for every zero outside the unit circle, we obtain:

( ) ( ) ( )min apH z H z H z=

▪ Example 7: Minimum-phase/allpass decomposition ( )
1

11
2

1 5

1

z
H z

z

−

−

+
=

+

( ) ( )

( )
1 1 1 1 11 1 1 1 1

5 5 5 5 5
1 1 1 1 11 1 1 1 1

2 2 5 2 5

1 1
5 5 5
1 1 1 1 1

apminH z H z

z z z z z
H z

z z z z z

− − − − −

− − − − −

+ + + + +
= = =

+ + + + +

( )( ) ( ) 1
1H z H z z a− = − where, by definition, H1(z) is minimum phase
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▪ Note: a quick way to obtain the minimum-phase system is by replacing each 

factor (1 + az−1), where |a| > 1, by a factor of the form                 .( )111 aa z −+

▪ Based on the decomposition of a nonminimum-phase system, we can express 

the group delay of H(z) as:                                        ( ) ( ) ( )min ap
g g g w  w  w= +

Since                  for 0 ≤ w ≤ p, it follows that                         , 0 ≤ w ≤ p. ( ) 0ap
g w  ( ) ( )min

g g w  w

We conclude that among all pole–zero systems having the same magnitude 

response, the minimum-phase system has the smallest group delay.

Maximum- and mixed-phase systems A causal and stable system with a rational 

TF is called maximum phase if all its zeros are outside the unit circle. 

▪ A system with arbitrary H(z) is maximum phase, if it is causal, stable, and 

H(z)  0 for |z|  1.
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▪ Example 8: Minimum-, maximum-, and mixed-phase systems

Consider a minimum-phase system with transfer function:

( ) ( )( ) ( )1 1 1 21 1 1minH z az bz a b z abz− − − −= − − = − + + where −1  a, b  1

▪ A system that is neither minimum phase nor maximum phase is called a 

mixed-phase system.

This system has two zeros inside the unit circle at z = a, z = b. If we only reflect 

one zero outside the unit circle, we obtain the following mixed-phase systems:

1 2( ) ( )( ), ( ) ( )( )1 1 1 1 1 11 1 1 1mix mixH z a a z bz H z b az b z− − − − − −= − − = − −

Reflecting both zeros outside the unit circle yields the maximum-phase system:

( ) ( )( ) ( )1 1 1 1 1 21 1maxH z ab a z b z ab a b z z− − − − − −= − − = − + +

( ) ( / )2 1max minH z z H z−=
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Which illustrates how the zeros of Hmin(z), which are inside the unit circle, are 

reflected outside the unit circle to become the zeros of Hmax(z).

• All systems have the same 

magnitude response,

• The minimum (maximum) phase 

system has the minimum 

(maximum) group delay, and

• The group delay of mixed-phase 

systems are between those of 

minimum- and maximum-phase 

systems.

From figure below we observe that:
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