Numerical Analysis Programming

Roots Of Equations Part-02

Root Finding Problems

Many problems in Science and Engineering are expressed as:

Given a continuous function $f(x)$, find the value r such that $f(r)=0$

These problems are called root finding problems.

False Position Method

- If a real root is bounded by xl and xu of $\mathrm{f}(\mathrm{x})=0$, then we can approximate the solution by doing a linear interpolation between the points $[\mathrm{xl}, \mathrm{f}(\mathrm{xl})]$ and $[\mathrm{xu}$, $f(x u)]$ to find the $x r$ value such that $I(x r)=0, l(x)$ is the linear approximation of $f(x)$.

$$
x_{r}=\frac{x_{l} f_{u}-x_{u} f_{l}}{f_{u}-f_{l}}
$$

Open Methods

- For the bracketing methods which is discussed in previous lecture, the root is located within an interval prescribed by a lower and an upper bound. Repeated application of these methods always results in closer estimates of the true value of the root. Such methods are said to be convergent because they move closer to the truth as the computation progresses.

Open Methods

- In contrast, the open methods described in this lecture are based on formulas necessarily bracket the root. As such, they sometimes diverge or move away from the true root as the computation progresses (Fig. b). However, when the open methods converge (Fig. c), they usually do so much more quickly than the bracketing methods.
- We will begin our discussion of open techniques with a simple version that is useful for illustrating their general form and also for demonstrating the concept of convergence.

Simple Fixed Point Iteration

- Also known as one-point iteration or successive substitution
- To find the root for $f(x)=0$, we reformulate $f(x)=0$ so that there is an x on one side of the equation.

$$
f(x)=0 \Leftrightarrow g(x)=\boldsymbol{x}
$$

- If we can solve $g(x)=x$, we solve $f(x)=0$.
$-x$ is known as the fixed point of $g(x)$.
- We solve $g(x)=x$ by computing

$$
x_{i+1}=g\left(x_{i}\right) \quad \text { with } x_{0} \text { given }
$$

until x_{i+1} converges to x.

Simple Fixed Point Iteration

$$
\begin{aligned}
& f(x)=x^{2}+2 x-3=0 \\
& x^{2}+2 x-3=0 \Rightarrow 2 x=3-x^{2} \Rightarrow x=\frac{3-x^{2}}{2} \\
& \Rightarrow x_{i+1}=g\left(x_{i}\right)=\frac{3-x_{i}^{2}}{2}
\end{aligned}
$$

Reason: If x converges, i.e. $x_{i+1} \rightarrow x_{i}$

$$
\begin{aligned}
& x_{i+1}=\frac{3-x_{i}^{2}}{2} \rightarrow x_{i}=\frac{3-x_{i}^{2}}{2} \\
& \Rightarrow x_{i}^{2}+2 x_{i}-3=0
\end{aligned}
$$

- Example: Use simple fixed-point iteration to locate the root of $f(x)=e^{-x}-x$.
- Solution: The function can be separated directly and expressed in Equation as: $x_{i+1}=e^{-x_{i}}$. Starting with an initial guess of $x_{i}=0$, the iterative equation can be applied to compute:

Simple Fixed Point Iteration

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\varepsilon_{a}(\%)$	$\varepsilon_{t}(\%)$
$\mathbf{0}$	0		100.0
$\mathbf{1}$	1.000000	100.0	76.3
$\mathbf{2}$	0.367879	171.8	35.1
$\mathbf{3}$	0.692201	46.9	22.1
$\mathbf{4}$	0.500473	38.3	11.8
$\mathbf{5}$	0.606244	17.4	6.89
$\mathbf{6}$	0.545396	11.2	3.83
$\mathbf{7}$	0.579612	5.90	2.20
$\mathbf{8}$	0.560115	3.48	1.24
$\mathbf{9}$	0.571143	1.93	0.705
$\mathbf{1 0}$	0.564879	1.11	0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329 .

Newton Raphson Method

- Given an initial guess of the root x_{0}, Newton-Raphson method uses information about the function and its derivative at that point to find a better guess of the root.
- Based on Taylor series expansion:

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \Delta x+f^{\prime \prime}\left(x_{i}\right) \frac{\Delta x^{2}}{2!}+O \Delta x^{3}
$$

The root is the value of x_{i+1} when $f\left(x_{i+1}\right)=0$
Rearranging,

$$
\begin{aligned}
& 0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(\left(x_{i+1}-x_{i}\right)\right. \\
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad \text { Newton-Raphson formula }
\end{aligned}
$$

Newton Raphson Method

- Graphical Depiction: If the initial guess at the root is x_{i}, then a tangent to the function of x_{i} that is $f^{\prime}\left(x_{i}\right)$ is extrapolated down to the x-axis to provide an estimate of the root at x_{i+1}.

Newton Raphson Method

- Example: Use the Newton-Raphson method to estimate the root of $f(x)=e^{-x}-x$, employing an initial guess of $x_{0}=0$
- Solution: The first derivative of the function can be evaluated as: $f^{\prime}(x)=-e^{-x}-1$ which can be substituted along with the original function: $x_{i+1}=x_{i}-\frac{e^{-x_{i-x}}}{e^{-x_{i-1}}}$
Starting with an initial guess of $x_{0}=0$, the iterative equation can be applied to compute:

