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▪ Example 1: Fourier transform of the sinc function

Properties of Fourier transform

Linearity of the Fourier transform: { ( ) ( )} { ( )} { ( )}1 2 1 2x t y t x t y t   + = +F F F

Duality property: ( ) ( ) ( ) ( )2x t X X t x ⎯→  ⎯→ −F F

Duality property (using f): ( ) ( ) ( ) ( )x t X f X t x f⎯→  ⎯→ −F F

  sinc( )

{sinc( )}

1
2 2

2 2

t

t


 

 

 

  =  
 

−   =  =    
   

F

F

( ){sinc( )}t f= F
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▪ Example 3: Fourier transform of the unit-step function

( ) ( )
0

j t j tX x t e dt e dt 
 − −

−
= =  could not be evaluated

u(t) = ½ + ½ sgn(t)

{ ( )} ( )
1

u t j


 = +F

F {u(t)} = F {½ + ½ sgn(t)}

= ½F{1} + ½F { sgn(t)}

{ ( )} ( )
1 1
2 2u t f

fj 
= +F

▪ Example 2: Transform of a constant-amplitude signal

F{(t)} = 1 , all  ⇒ F{1} = 2(−) = 2(),  F{1} = (f) (duality)
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Symmetry of the Fourier transform

( ): real, Im{ ( )} 0 ( ) ( )

( ): imag, Re{ ( )} 0 ( ) ( )

x t x t X X

x t x t X X

 

 





=  = −

=  = − −

Transforms of even and odd signals

( ) ( ), for all  Im{ ( )} , for all 0x t x t t X  − =  =

▪ If the real-valued signal x(t) is an even function of time, the resulting Fourier 

transform X() is real-valued for all .

▪ If the real-valued signal x(t) has odd-symmetry, the resulting Fourier 

transform X() is purely imaginary.

( ) ( ), for all  Re{ ( )} , for all 0x t x t t X  − = −  =
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▪ Example 4: Modulated pulse

cos(2 ),
( )

,
0

0
f t t

x t
t

 




=



Time shifting ( ) ( ) ( ) ( ) jx t X x t X e    −⎯→  − ⎯→F F

Frequency shifting ( ) ( ) ( ) ( )0
0

j tx t X x t e X  ⎯→  ⎯→ −F F

Modulation property

 
/ /

( ) ( )

( ) cos( ) ( ) ( )

( ) sin( ) ( ) ( )

1
0 0 02

1
0 0 02

j j

x t X

x t t X X

x t t X e X e 



    

    −  

⎯→ 

⎯→ − + +

 ⎯→ − + + 

F

F

F

Using p(t), the signal x(t) can be expressed as x(t) = p(t)cos (2f0t)
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where ( )
t

p t


 =   
 2

( )

 

( ) ( )

( ) sinc

( ) ( ) ( )

sinc ) sinc )

1
0 02

0 0

2P f f

X f P f f P f f

f f f f

 

   

= 

= − + +

=  ( + +  ( −
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Time and frequency scaling

The parameter a is any non-zero and real-valued constant.

Differentiation in the time domain

▪ Example 5: Triangular pulse revisited

( )( ) /x t A t = 

( ) ( ) ( ) ( )x t X x at X
a a





⎯→  ⎯→F F

( ) ( ) [ ( )] ( ) ( ), [ ( )] ( ) ( )2
n n

n n
n n

d d
x t X x t j X x t j f X f

dt dt
   ⎯→  ⎯→ ⎯→F F F

( ) / /
( )

2 2dx t A t t
w t

dt
 

  

+ −    = =  −         
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Differentiation in the frequency domain

Convolution property

Multiplication of two signals

( / ) ( / )( ) sinc( ) sinc( ) sinc( ) sin( )2 2 2 2 2j f j fW f A f e A f e jA f f       −= − =

sinc( ) sin( )( )
( ) ( ) ( ) ( ) sinc ( )22

2
2 2

jA f fW f
W f j f X f X f A f

j f j f
  

  
 

=  = = =

( ) ( ) ( ) ( ) [ ( )]
n

n
n

d
x t X jt x t X

d
 


⎯→  − ⎯→F F

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 2 1 2

x t X x t X

x t x t X X

 

 

⎯→ ⎯→

  ⎯→

F F

F

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )

1 1 2 2

1
1 2 1 2 1 2 1 22

x t X x t X

x t x t X X x t x t X f X f


 

 

⎯→ ⎯→

 ⎯→  ⎯→ 

F F

F F
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Integration

Applying Fourier transform to periodic signals

▪ Example 7: Fourier transform of sinusoidal signal

( )
( ) ( ) ( ) ( ) ( )

t X
x t X x d X

j


     
−

⎯→  ⎯→ + 
F F

( ) 0j tx t e 
=

{1} ( ) ( ) ( )0
02 2j te     =  = −F F

▪ Example 6: Fourier transform of complex exponential signal

( ) cos( )0x t t=

{1} ( ) {cos( )} ( ) ( )0 0 02 t        =  = − + +F F

▪ The idea can be generalized to apply to any periodic continuous-time signal 

that has an EFS representation:
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( ) ( ) ( )0 0jk t jk tj t j t
k k

k k

x t c e X x t e dt c e e dt  
  − −

− −
=− =−

 
=  = =  

 
  

EFS coefficients for a signal Fourier transform obtained

 

( )

( )

0

02

jk t j t
k

k

k
k

X c e e dt

c k

 

  

  −

−
=−


=−

 =
  

= −

 



▪ Example 8: Fourier transform of periodic pulse train

Determine the FT of the periodic pulse train with duty cycle d = /T0

ck = d sinc (kd) ( ) sinc( ) ( )02
k

X d kd k    


=−

= −

0 = 1/T0 is the fundamental radian frequency.
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4. Energy and Power in the Frequency Domain

Parseval’s theorem

( )
t T

kt
k

x t dt c
T

+

=−

= 
0 0

0

2 2

0

1

Energy and power spectral density

( ) ( )x k
k

S f c f kf


=−

= −
2

0 power spectral density of the signal x(t)

▪ For a periodic power signal ෤x(t) with period T0 and EFS coefficients {ck}: 

( ) ( )
 

− −
= x t dt X f df2 2

▪ For a non-periodic energy signal x(t) with a Fourier transform X(f):
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( ) ( )xG f X f=
2

( ) ( ) ( )
2 1

2x xx t dt G f df G d 


  

− − −
= =  

energy spectral density of the signal x(t)

▪ Example 9: Power spectral density of a periodic pulse train

Determine the power spectral density for x(t). Also find the total power, the 

dc power, the power in the first three harmonics, and the power above 1 Hz.

Px in (−f0, f0) ( )
f

xf
S f df

−
= 

0

0

( ) ( )
21

2x x k
k

S f df S d c 


 

− −
=−

= =  

sinc( / )kc k= 1
3 3 ( ) sinc( / ) ( / )

21
3 3 3x

k

S f k f k


=−

= −
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The total power in the signal x(t): ( ) ( )
.

.

t T

t
x t dt dt

T
+

−
= = 

0 0

0

0 52 2

0 50

1 1 1
1

3 3

, ,
2 2 2 2

1 1 1 2 2 2 32 2

3 3
0 1520 0 0380 0

2 8
. .P c c P c c P

 
− −= + =  = + =  =

The third harmonic is at frequency f = 1 Hz. Thus, the power above 1 Hz:

1 2 3 0 3333 0 1111 0 1520 0 0380 0 0 0322. . . . .hf x dcP P P P P P= − − − − = − − − − =
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▪ Example 10: Energy spectral density of the sinc function

Determine the energy spectral density of x(t) = sinc(10t). Afterwards, compute 

the total energy, and the energy in the sinc pulse at frequencies up to 3 Hz.

( ) ( ), ( ) ( ) sinc ( )

( ) .

x

x x

f f
X f G f X f

E G f df df


− −

=  = =

= = = 

2 2

5

5

1 1
10 10 100 10

1
0 1

100

Ex in (−3, 3 Hz) = ( ) .xG f df df
− −

= = 
3 3

3 3

1
0 06

100
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Autocorrelation

▪ For an energy signal x(t) the autocorrelation function is defined as

( ) ( ) ( )xxr x t x t dt 


−
= +

▪ For a periodic power signal ෤x(t) with period T0, the corresponding definition of 

the autocorrelation function is:
/

/
( ) ( ) ( )

T

xx T
r x t x t dt

T
 

−
= +

0

0

2

20

1

{ ( )} ( )xx xF r G f =

▪ The energy spectral density is the FT of the autocorrelation function:

{ ( )} ( )xx xF r S f =

▪ The power spectral density is the FT of the autocorrelation function:
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▪ Example 11: Power spectral density of a sinusoidal signal revisited

෤x(t) = 5cos(200t)

( ) cos(200 ) cos(200[ ]) cos(200 )

( ) { ( )} ( ) ( )

0 005

0 005

1 25
25

0 01 2
25 25

100 100
4 4

.

..xx

x xx

r t t dt

S f F r f f

   

  

−
= + =

= = + + −



Properties of the autocorrelation function

▪ rxx (0) ≥ |rxx ()| for all 

▪ rxx (−) = rxx () for all , that is, the autocorrelation function has even symmetry.

▪ If the signal x(t) is periodic with period T, then its autocorrelation function ෤rxx () 

is also periodic with the same period.
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5. Transfer Function Concept

▪ In time-domain analysis of systems we have relied on two distinct 

description forms for CTLTI systems:

1. A linear constant-coefficient differential equation that describes the 

relationship between the input and the output signals.

2. An impulse response which can be used with the convolution operation 

for determining the response of the system to an arbitrary input signal.

▪ The concept of Transfer function will be introduced as the third method for 

describing the characteristics of a system.

( ) { ( )} ( ) j tH F h t h t e dt
 − 

−
 = = 
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▪ The transfer function concept is valid for LTI systems only.

▪ In general, H() is a complex function of ,                               .

▪ Example 12: Transfer function for the simple RC circuit

( )( ) ( ) jH H e   =

/

/

( ) ( )

( ) ,
( / )0

1

1

1 1 1
1 1

t RC

t RC j t

c

c RC

h t e u t
RC

H e e dt
RC j RC j


  



−

 − −

=

= = =
+ +

=



( ) , ( ) tan ( / )
( / )

1

2

1

1
c

c

H    
 

−=  = −
+

( ) , ( )
1 1
1 2

c cH H
j

 = =
+
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▪ c represents the frequency at which the magnitude 

of the transfer function is 3 decibels below its peak 

value at  = 0, ( )
log log dB

( )10 10
1

20 20 3
0 2
cH

H


=  −

▪ The frequency c is often referred to as the 3-dB 

cutoff frequency of the system.

Obtaining the TF from the differential equation

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ), ( ) ( ), , , 0 1

k k
k k

k k

Y
y t h t x t Y H X H

X
d y t d x t

j Y j X k
dt dt


   



   

=  ⎯→ =  =

⎯→ ⎯→ =

F

F F
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▪ Example 13: Transfer function from the differential equation

( ) ( )
( ) ( )

d y t dy t
y t x t

dtdt
+ + =

2

2 2 26

( ) ( ) ( ) ( ) ( ) ( )

[(26 ) ] ( ) ( ) ( )
(26 )

2

2
2

2 26

1
2

2

j Y j Y Y X

j Y X H
j

     

    
 

+ + =

− + =  =
− +

6. CTLTI Systems with Periodic Input Signals

Response of a CTLTI system to complex exponential signal

( ) 0j tx t e 
=

( ) cos( ) sin( ) 0
0 0 0

1 1

jk t
k k k

k k k

x t a a k t b k t c e  
  

= = =−

= + + =  
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( )

[ ( )]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 0 0 0 0
0 0

j t

j t j j t j t

y t h t x t h x t d h e d

e h e d e H H e

 

     

    

   

  −

− −

 − +

−

=  = − =

= = =

 



▪ That is,      is an eigenfunction of a LTI system and H() is the corresponding 

eigenvalue. We refer to H as the frequency response of the system.

j te 

Response of a CTLTI system to sinusoidal signal

( ) cos( )0x t t=

( ) ( )

( ) cos( )

( ) ( ) ( )

( ) ( )

0 0

0 0

0 0 0 0

1 1
0 2 2

1 1
0 02 2

1 1
0 02 2

j t j t

j t j t

j t j j t j

x t t e e

y t e H e H

e H e e H e

 

 

   



 

 

−

−

 − − 

= = +

= + −

= + −

If the impulse response h(t) is real-valued: 
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Response of a CTLTI system to periodic input signal

[ ( )] [ ( )]

( ) ( ) , ( ) ( )

( ) ( ) ( ) ( ) cos( ( ))0 0 0 0

0 0 0 0

0 0 0 0 0
1 1
2 2

j t j t

H H

y t H e H e H t   

   

    + − +

− =  − = −

= + = + 

( ) 0jk t
k

k

x t c e 


=−

= 

   { ( )} ( )0 0 0 0
0

jk t jk t jk t jk t
k k k k

k k k k

T x t T c e T c e c T e c H k e   
   

=− =− =− =−

 
= = = = 

 
   

7. CTLTI Systems with Non-Periodic Input Signals

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ) ( )

y t h t x t Y H X

Y H X Y X

  

     

=   =

= = + 
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Consider again the RC circuit. Let fc = 

1/RC = 80 Hz. Determine the FT of the 

response of the system to the unit-

pulse input signal x(t) = Π(t).

( ) , ( ) sinc( ),
( / )

( ) sinc( ),
( / )

( ) sinc( ) ,
( /80)

( ) tan ( / ) [sinc( )]

2

1

1
1
1

1 80
1

1
80

c

H f X f f
j f f

Y f f
j f

Y f f
f

Y f f f−

= =
+

=
+

=
+

= − +

▪ Example 14: Pulse response of RC circuit
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