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▪ The Laplace transform (LT) can be viewed as a generalization of  the 

(classical) Fourier transform.

▪ Certain characteristics of continuous-time (CT) systems can only be studied 

via the Laplace transform. Such is the case of stability, transient and steady-

state responses.

▪ The FT of a signal, if it exists, can be obtained from its Laplace transform 

while the reverse is not generally true.

1. Introduction

2. Laplace Transform

{ ( )} ( ) ( ) stL x t X s x t e dt−= = 

▪ The Laplace transform of a continuous-time signal x(t) is defined as:
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where s = s + jw, the independent variable of the transform. s : damping 

factor, w: frequency variable.

▪ There are two important variants:

Unilateral (or one-sided): ( ) { ( )} ( ) ;
0

st
uX s x t x t e dt

−

 −= = L

Bilateral (or two sided): ( ) { ( )} ( ) ;stX s x t x t e dt−

−



= = L

Relationship Between LT and Continuous-Time FT

( )( ) ( ) [ ( ) ] { ( )}j t t j t tX j x t e dt x t e e dt e x ts w s w ss w
 − + − − −

− −
+ = = =  F

( ) ( ) ( ) { ( )}st j t

s j

X j x t e dt x t e dt x tw

w

w
 − −

− −
=

 = = =
    F
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▪ Example 1: Laplace transform of the unit impulse

( ) ( ) ( )st stX s x t e dt t e dt
 − −

− −
= = =  1

▪ Example 2: Laplace transform of the unit-step signal

( ) ( ) ( ) , Re{ }
0

0
1st st stX s x t e dt u t e dt e dt
s

s
  − − −

− −
= = = =  

( ) ( ) ( )t t jwt tx t e dt x t e e dt x t e dts s s  − − − −

− − −
=     

▪ For the Laplace transform X(s) of x(t) to exist we need that:

Regions of Convergence

▪ We need to consider the region in the s-plane where the transform exists—or 

its region of convergence (ROC).
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▪ For the Laplace The roots of N(s) are called zeros, and the roots of D(s) are 

called poles. The ROC is related to the poles of the transform.

Poles and Zeros and the Region of Convergence

▪ Typically, X(s) is rational, X(s) = N(s)/D(s).

▪ If {σi} are the real parts of the poles of X(s), the region of convergence 

corresponding to different types of signals is determined from its poles as 

follows:

▪ Note: The frequency does not affect the ROC.
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▪ For a causal signal x(t), the region of convergence of its Laplace transform 

X(s) is a plane to the right of the poles, {( , ): max{ }, }c iR s w s s w=  −    

▪ For a anticausal signal x(t), the ROC of its Laplace transform X(s) is a plane to 

the left of the poles, {( , ): min{ }, }ac iR s w s s w=  −    

▪ For a noncausal signal x(t), the region of convergence of its Laplace transform 

X(s) is the intersection of the ROC corresponding to the causal component, 

Rc, and Rac corresponding to the anticausal component, c acR R

▪ Example 3: Find the Laplace transform of x1(t)

if 0
( )

otherwise

te t
x t

− 
= 


1 0 t

1

x1(t)
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( )

(

R

( ) ( ) ,
)

}e{

1

1 1 0
0

1

1

1 1

s t
st t st e

X s x t e dt e e dt
s s

s


− +

 − − −

−
= = = =

− + +

 −

 

−1

ROC

s-plane



▪ Example 4: Find the Laplace transform of x2(t)

if 0
( )

otherwise

t te e t
x t

− − − 
= 



2

2 0 t

x2(t)

(

R

( ) ( )

,
( )

{e

)

}

2
2 0

2

0 0

1

1

1 2

t t st

t st t st

X s e e e dt

e e dt e e

s

dt
s s

 − − −

 − − − −

= −

= − =
+ +

 −



 
−1

ROC

s-plane

−2
 

https://manara.edu.sy/


https://manara.edu.sy/Laplace Transform for Continuous-Time Signals and Systems 9/312023-2024

▪ Note: Left-sided signals have left-sided LT(bilateral only).

if 0
( )

otherwise

te t
x t

−− 
= 


3 0

▪ Example 5: LT of an anti-causal exponential signal t

x3(t)

−1

( )

( ) ( ) ,
(

}Re

)

{

010

3 3

1

1

1

1

s t
st t st e

X s x t e dt e e dt
s s

s

− +
 − − −

− −
−

−
= = − = =

+ +

−

−



 

−1

R
O

C s-plane



▪ It is possible for two different signals to have the same transform expression 

for X(s).

Left and Right Sided ROCs
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In order for us to uniquely identify which signal among the two led to a 

particular transform, the ROC must be specified along with the transform.

{ ( )} , ROC: Re{ }

{ ( )} , ROC: Re{ }

t

t

L e u t s
s

L e u t s
s

−

−

=  −
+

− − =  −
+

1
1

1
1

1
1
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▪ Example 6: Find the Laplace transform of x4(t)

( )
tx t e−

=4

( ) ( )

(1 ) (1 )

Re Re

(

Re

)

,
( ) ( )

{ }

0 1 1
4 0

0

2
0

1 1

1 1 2

1 1

1 1

1 1 1

t st s t s t

s t s t

X s e e dt e dt e dt

e e

s s s s

s

s

 − − − +

− −


− +

−
 −

= = +

−
= + = + =

− − + − + −

−  

  
t

x4(t)

−1

ROC

s-plane

1


▪ Example 7: Laplace transform of a pulse signal

/
( )

t
x t





− 
=   

 

2
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( ) ( )
st s

st e e
X s e dt

s s





− −

− −
= = =

−0
0

1
1

( ) ( ) converge at 
s

s
s

e
X s X s s




−

=

=

= =  =
0

0

0
1

▪ Example 8: Laplace transform of complex exponential signal
jw0

ROC

s-plane
( ) ( )0j tx t e u tw

=
( )

( )
( )

R

,

}e

( )

{

0

0 0

0
0 00

0

1j t st
j t j s tst e

X s e u t e dt e dt
j s s j

s

w
w w

w w


−

  −−

−
= = = =

−



− 
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Properties of Laplace Transform

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩ R2)

Delay by T x(t − T) X(s)e−sT R

Multiply by t tx(t) −dX(s)/ds R

Multiply by e−αt x(t)e−αt X(s + a) Shift R by −a

Scaling in t x(at) aR

Differentiate in t dx(t)/dt sX(s) ⊃ R

Integrate in t ⊃ (R ∩ (Re(s)  0))

Convolve in t x1 * x2(t) X1(s) X2(s) ⊃ (R1 ∩ R2)

( )
t
x d 

−
( )X s
s

( )
| |

s
X
a a
1
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Laplace Transform Pairs

( )

( ) /

( ) /

!
( )

!
( )

( )

( )

n
n

n
n

at

at

t

u t s

u t s

n
t u t

s
n

t u t
s

e u t
s a

e u t
s a



+

+

−

−

− −

− −

+

− −
+

1

1

1

1

1

1

1

1    All s

2    Re{s}  0

3    Re{s}  0

5    Re{s}  0

4    Re{s}  0

7    Re{s}  −a

6    Re{s}  −a
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8     Re{s}  −a

9     Re{s}  −a

10     Re{s}  0

12     Re{s}  −a

11     Re{s}  0

13     Re{s}  −a

!
( )

( )

!
( )

( )

[cos ] ( )

[sin ] ( )

[ cos ] ( )
( )

[ sin ] ( )
( )

1

1

0 2 2
0

0
0 2 2

0

0 2 2
0

0
0 2 2

0

n at
n

n at
n

at

at

n
t e u t

s a
n

t e u t
s a
s

t u t
s

t u t
s
s a

e t u t
s a

e t u t
s a

w
w

w
w

w

w
w

w
w

w

−

+

−

+

−

−

+

− −
+

+

+

+

+ +

+ +
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▪ Example 9: Laplace transform of a truncated sine function

sin( ),
( )

, otherwise

0 1
0
t t

x t
  

= 


ROC: entire s-plane except points where

 Re{s} → −∞

(1 )
( ) sin( ) ( )

1 1

2 20 0

1

2

s
st j t j t st e

X s t e dt e e e dt
j s

  




−
− − − +

= = − =
+

 

Another method

x(t) = sin(t)u(t) + sin([t − 1])u(t − 1)

(1 )
( )

2 2 2 2 2 2

s
s e

X s e
s s s

  

  

−
− +

= + =
+ + +
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▪ Example 10: Using the convolution property of the Laplace transform

x1(t) = e−tu(t),  x2(t) = (t) − e−2tu(t)

Determine x(t) = x1(t) ∗ x2(t) using Laplace transform techniques.

( ) , ROC: Re{ } 1X s s
s

=  −
+

1

1

1

−2

ROC

s-plane



Cancelled
pole

−1

( ) , ROC: Re{ } 2
s

X s s
s s

+
= − =  −

+ +
2

1 1
1

2 2

( ) ( ) ( ) , ROC: Re{ } 2X s X s X s s
s

= =  −
+

1 2

1

2

( ) { ( )} ( )tx t X s e u t
s

− − − 
= = = 

+ 

1 1 21

2
L L
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Initial Value Theorem

For a function x with Laplace transform X, if x is causal and contains no impulses 

or higher order singularities at the origin, then:

(0 ) lim ( )
s

x sX s+

→
=

▪ When X is known but x is not, the initial value theorem eliminates the need to 

explicitly find x in order to evaluate x(0+).

▪ Example 11: Calculate the initial value of the function x(t), whose LT is:

( )
( )

( )

s
X s

s

+
=

+ +2 2

2 1

1 5( )
(0 ) lim ( ) lim ( ) lim

( )s st

s s
x x t sX s

s+

+

→ →→

+
= = = =

+ +2 20

2 1
2

1 5
Verification: ( ) cos ( ) ( )tx t e t u t−= 2 5
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For a function x with Laplace transform X, if x is causal and x(t) has a finite limit 

as t → ∞, then:
lim ( ) lim ( )
t s
x t sX s

→ →
=

0

▪ When X is known but x is not, the final value theorem eliminates the need to 

explicitly find x in order to evaluate limit t → ∞ x(t).

▪ Example 12: Calculate the final value of the function x(t), whose Laplace 

transform is:
( )

( )

s
X s

s s

+
=

+

2

1( )
lim ( ) lim ( ) lim lim

( )t s s s

s s s
x t sX s

s s s→ → → →

+ +
= = = =

+ +0 0 0

2 2
2

1 1

Verification: ( ) ( ) ( )tx t e u t−= −2

Final Value Theorem
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Inverse Laplace Transform

{ ( )} ( ) ( ) ,1 1

2

j st

j
L X s x t X s e ds

j

s

s

+ −

− 
= = The inverse LT x of X is given by

where Re(s) = s is in the ROC of X.

▪ We do not usually compute the inverse Laplace transform directly using the 

above equation.

▪ For rational functions, the inverse Laplace transform can be more easily 

computed using partial fraction expansions (PFE).

▪ Example 13: Calculate the inverse LT of the function H(s) = 1/(s + a)

with ROC: Re{s}  −a

with ROC: Re{s}  −a

h(t) = e−atu(t) 

h(t) = −e−atu(− t) 
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▪ Example 14: Using PFE with complex poles

The Laplace transform of a signal x(t) is ( )
( )

s
X s

s s

+
=

+2
1

9

( )
k k k

X s
s s j s j

= + +
+ −

1 2 3

3 3

( ) ( ) [ ] ( ) [ ] ( )j t j t j t j tx t u t e e u t j e e u t− −= − + + −3 3 3 31 1 1

9 18 6

with the ROC specified as Re {s}  0. Determine x(t).

, ,k k j k j= = − + = −1 2 3

1 1 1 1 1

9 18 6 18 6

( ) ( ) cos( ) ( ) sin( ) ( )x t u t t u t t u t= − +
1 1 1

3 3
9 9 3

Based on the specified ROC, 

the signal x(t) is causal
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▪ Example 15: Multiple-order poles

A causal signal x(t) has the Laplace transform
( )

( )
( ) ( )

s s
X s

s s

+
=

+ +3

1

1 2
( )

( )
( ) ( ) ( ) ( )

s s
X s

s ss s s s

+ −
= = + − +

+ ++ + + +3 2 3

1 3 3 2 3

1 21 2 1 1

{ ( )} , { ( )}
( )

{ ( )}
( ) ( )

t t

t

d
L e u t L te u t

s ds s s

d
L t e u t

ds s s

− −

−

 
= = − = + + + 

 
= − = 

+ + 

2

2
2 3

1 1 1

1 1 1

1 2

1 1

( ) ( ) ( ) ( ) ( )t t t tx t e u t te u t t e u t e u t− − − −= − + − +2 3 23 3 3
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3. Using the Laplace Transform with CTLTI Systems

Transfer Function and LTI Systems

h(t)
H(s)

x(t)

X(s)

y(t)

Y(s)

▪ Since y(t) = x(t) * h(t), the system is characterized in the Laplace domain by 

Y(s) = X(s)H(s).

▪ H(s) is the transfer function (or system function) of the system.

▪ A LTI system is completely characterized by its transfer function H.

Relating the transfer function to the differential equation

▪ Many LTI systems of practical interest can be represented using an Nth-order 

linear differential equation with constant coefficients.
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▪ Consider a system with input x and output y that is characterized by an 

equation of the form:
( ) ( )k kN M

k kk k
k k

d y t d x t
a b
dt dt= =

= 
0 0

where the ak and bk are complex constants and

( ) ( ) ( ) ( )

0 0 0 0

k k k kN M N M

k k k kk k k k
k k k k

d y t d x t d y t d x t
a b a b
dt dt dt dt= = = =

       
=  =       

       
   L L L L

( ) ( )

0 0

k kN M

k kk k
k k

d y t d x t
a b

dt dt= =

   
=   

   
 L L

( )
( ) ( ) ( )

( )

0

0 0
0

M kN M
kk k k

k k N k
k k kk

b sY s
a s Y s b s X s H s

X s a s

=

= =
=

=  = =
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▪ The transfer function is always rational.

▪ The impulse response of the system h(t) = L−1{H(s)}.

▪ The convolution operation is only applicable to problems involving LTI 

systems. 

▪ Therefore it follows that the transfer function concept is meaningful only for 

systems that are both linear and time invariant.

▪ In determining the transfer function from the differential equation, all initial 

conditions must be assumed to be zero.

▪ Example 16: Finding the transfer function from the DE

A CTLTI system is defined by means of the differential equation:

( ) ( ) ( ) ( )
( ) ( )

d y t d y t dy t d x t
y t x t

dtdt dt dt
+ + + = +

3 2 2

3 2 2
5 17 13
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( ) ( ) ( ) ( ) ( ) ( )s Y s s Y s sY s Y s s X s X s+ + + = +3 2 25 17 13

( )
( )

( )

Y s s
H s

X s s s s

+
= =

+ + +

2

3 2

1

5 17 13

Transfer function and causality

▪ Theorem: For a LTI system with a rational transfer function H, causality of the 

system is equivalent to the ROC of H being the right sided to the right of the 

rightmost pole or, if H has no poles, the entire complex plane.

▪ For a CTLTI system to be causal, its impulse response h(t) needs to be equal 

to zero for t  0.
( ) ( ) ( )st stH s h t e dt h t e dt

 − −

−
= = 0

▪ Consider a transfer function in the form:
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( )
( )

( )

M M
M M
N N

N N

b s b s b s bY s
H s

X s a s a s a s a

−
−

−
−

+ + + +
= =

+ + + +

1
1 1 0

1
1 1 0

For the system described by H(s) to be causal we need:

lim ( ) lim M NM

s s
N

b
H s s M N M N

a
−

→ →
=    −   0

Causality condition:

▪ In the transfer function of a causal CTLTI system the order of the numerator 

must not be greater than the order of the denominator.

Transfer function and stability:

▪ For a CTLTI system to be stable its impulse response must be absolute 

integrable. ( )h t dt


−
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Stability condition:

▪ For a CTLTI system to be stable, the ROC of its s-domain transfer function 

must include the imaginary axis.

▪ For a causal system to be stable, the transfer function must not have any 

poles on the imaginary axis or in the right half s-plane.

▪ For a anticausal system to be stable, the transfer function must not have any 

poles on the imaginary axis or in the right half s-plane.

▪ For a noncausal system the ROC for the transfer function, if it exists, is the 

region expressed in the form s1 < Re {s}  s2. For stability we need s1  0 and 

s2  0. The poles of the transfer function may be either:

a. On or to the left of the vertical line s = s1

b. On or to the right of the vertical line s = s2
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▪ Example 17: Impulse response of a stable system

A stable system is characterized by the transfer function:

Determine the ROC of the TF. Afterwards find the impulse response of the 

system.

( )
( )

( )( )( )

s s
H s

s s s

+
=

+ − −

15 1

3 1 2

The 3 poles are at s = −3, 1, 2. Since the system is known to be stable, its 

ROC must include the j-w axis. The only possible choice is −3  Re {s}  1.

( )
. .

H s
s s s

= − +
+ − −

4 5 7 5 18

3 1 2

h(t) = 4.5e−3tu(t) + 7.5etu(−t) − 18e2tu(−t)
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Interconnection of LTI Systems

▪ The series interconnection of the LTI systems with transfer functions H1 and 

H2 is the LTI system with transfer function H1H2. 

H1

X Y
H2 H1H2

X Y
≡
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▪ The parallel interconnection of the LTI systems with transfer functions H1 and 

H2 is the LTI system with transfer function H1 + H2.

H1 + H2

X Y
≡H1

X Y

H2

+
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