CRCC507: Signals and Systems

Lecture Notes 9: Laplace Transform for Continuous-Time Signals and Systems: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Mechatronics Manara University

حَـامعة

Chapter 7

Laplace Transform for Continuous-Time Signals and Systems

1 Introduction
2 Laplace Transform
3 Using the Laplace Transform with CTLTI Systems
Bode Plots
5 Simulation Structures for CTLTI Systems
6 Unilateral Laplace Transform

1. Introduction

- The Laplace transform (LT) can be viewed as a generalization of the (classical) Fourier transform.
- Certain characteristics of continuous-time (CT) systems can only be studied via the Laplace transform. Such is the case of stability, transient and steadystate responses.
- The FT of a signal, if it exists, can be obtained from its Laplace transform while the reverse is not generally true.

2. Laplace Transform

- The Laplace transform of a continuous-time signal $x(t)$ is defined as:

$$
L\{x(t)\}=X(s)=\int x(t) e^{-s t} d t
$$

where $s=\sigma+j \omega$, the independent variable of the transform. σ : damping factor, ω : frequency variable.

- There are two important variants:

Unilateral (or one-sided): $X(s)=\mathcal{L}_{u}\{x(t)\}=\int_{0-}^{\infty} x(t) e^{-s t} d t$;
Bilateral (or two sided): $\quad X(s)=\mathcal{L}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$;

Relationship Between LT and Continuous-Time FT

$$
\begin{aligned}
& X(\sigma+j \omega)=\int_{-\infty}^{\infty} x(t) e^{-(\sigma+j \omega) t} d t=\int_{-\infty}^{\infty}\left[x(t) e^{-\sigma t}\right] e^{-j \omega t} d t=\mathcal{F}\left\{e^{-\sigma t} x(t)\right\} \\
& X(j \omega)=\left.\left[\int_{-\infty}^{\infty} x(t) e^{-s t} d t\right]\right|_{s=j \omega}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=F\{x(t)\}
\end{aligned}
$$

- Example 1: Laplace transform of the unit impulse

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} \delta(t) e^{-s t} d t=1
$$

- Example 2: Laplace transform of the unit-step signal

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t=\frac{1}{s}, \quad \operatorname{Re}\{s\}>0
$$

Regions of Convergence

- We need to consider the region in the s-plane where the transform exists-or its region of convergence (ROC).
- For the Laplace transform $X(s)$ of $x(t)$ to exist we need that:

$$
\left|\int_{-\infty}^{\infty} x(t) e^{-\sigma t} d t\right|=\left|\int_{-\infty}^{\infty} x(t) e^{-\sigma t} e^{-j w t} d t\right| \leq \int_{-\infty}^{\infty}\left|x(t) e^{-\sigma t}\right| d t<\infty
$$

- Note: The frequency does not affect the ROC.

Poles and Zeros and the Region of Convergence

- Typically, $X(s)$ is rational, $X(s)=N(s) / D(s)$.
- For the Laplace The roots of $N(s)$ are called zeros, and the roots of $D(s)$ are called poles. The ROC is related to the poles of the transform.
- If $\left\{\sigma_{i}\right\}$ are the real parts of the poles of $X(s)$, the region of convergence corresponding to different types of signals is determined from its poles as follows:
- For a causal signal $x(t)$, the region of convergence of its Laplace transform $X(s)$ is a plane to the right of the poles, $R_{c}=\left\{(\sigma, \omega)\right.$: $\left.\sigma>\max \left\{\sigma_{i}\right\},-\infty<\omega<\infty\right\}$
- For a anticausal signal $x(t)$, the ROC of its Laplace transform $X(s)$ is a plane to the left of the poles, $\quad R_{a c}=\left\{(\sigma, \omega)\right.$: $\left.\sigma<\min \left\{\sigma_{i}\right\},-\infty<\omega<\infty\right\}$
- For a noncausal signal $x(t)$, the region of convergence of its Laplace transform $X(s)$ is the intersection of the ROC corresponding to the causal component, R_{c}, and $R_{a c}$ corresponding to the anticausal component, $R_{c} \cap R_{a c}$
- Example 3: Find the Laplace transform of $x_{1}(t)$

$$
x_{1}(t)= \begin{cases}e^{-t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
X_{1}(s)=\int_{-\infty}^{\infty} x_{1}(t) e^{-s t} d t=\int_{0}^{\infty} e^{-t} e^{-s t} d t=\left.\frac{e^{-(s+1) t}}{-(s+1)}\right|_{0} ^{\infty}=\frac{1}{s+1}, \\
\operatorname{Re}\{s\}>-1
\end{gathered}
$$

- Example 4: Find the Laplace transform of $x_{2}(t)$

$$
\begin{aligned}
x_{2}(t) & = \begin{cases}e^{-t}-e^{-2 t} & \text { if } t \geq 0 \\
0 & \text { otherwise }\end{cases} \\
X_{2}(s) & =\int_{0}^{\infty}\left(e^{-t}-e^{-2 t}\right) e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-t} e^{-s t} d t-\int_{0}^{\infty} e^{-2 t} e^{-s t} d t=\frac{1}{(s+1)(s+2)}, \\
& \operatorname{Re}\{s\}>-1
\end{aligned}
$$

- Note: Left-sided signals have left-sided LT(bilateral only).
- Example 5: LT of an anti-causal exponential signal

$$
\begin{gathered}
x_{3}(t)= \begin{cases}-e^{-t} & \text { if } t \leq 0 \\
0 & \text { otherwise }\end{cases} \\
X_{3}(s)=\int_{-\infty}^{\infty} x_{3}(t) e^{-s t} d t=\int_{-\infty}^{0}-e^{-t} e^{-s t} d t=\left.\frac{-e^{-(s+1) t}}{-(s+1)}\right|_{-\infty} ^{0}=\frac{1}{s+1}, \\
\\
\qquad \operatorname{Re}\{s\}<-1
\end{gathered}
$$

Left and Right Sided ROCs

- It is possible for two different signals to have the same transform expression for $X(s)$.

$$
\begin{aligned}
& L\left\{e^{-t} u(t)\right\}=\frac{1}{s+1}, \quad \text { ROC }: \operatorname{Re}\{s\}>-1 \\
& L\left\{-e^{-t} u(-t)\right\}=\frac{1}{s+1}, \quad \text { ROC: } \operatorname{Re}\{s\}<-1
\end{aligned}
$$

In order for us to uniquely identify which signal among the two led to a particular transform, the ROC must be specified along with the transform.

- Example 6: Find the Laplace transform of $x_{4}(t)$

$$
x_{4}(t)
$$

$$
\begin{aligned}
x_{4}(t) & =e^{-|t|} \\
X_{4}(s)= & \int_{-\infty}^{\infty} e^{-|t|} e^{-s t} d t=\int_{-\infty}^{0} e^{(1-s) t} d t+\int_{0}^{\infty} e^{(1+s) t} d t \\
= & \left.\frac{e^{(1-s) t}}{(1-s)}\right|_{-\infty} ^{0}+\left.\frac{-e^{(1+s) t}}{-(1+s)}\right|_{0} ^{\infty}=\frac{1}{1-s}+\frac{1}{1+s}=\frac{2}{1-s^{2}}, \\
& \quad 1<\operatorname{Re}\{s\}<1
\end{aligned}
$$

- Example 7: Laplace transform of a pulse signal

$$
x(t)=\Pi\left(\frac{t-\tau / 2}{\tau}\right)
$$

$$
\begin{aligned}
& X(s)=\int_{0}^{\tau}(1) e^{-s t} d t=\left.\frac{e^{-s t}}{-s}\right|_{0} ^{\tau}=\frac{1-e^{-s \tau}}{s} \\
& \left.X(s)\right|_{s=0}=\left.\frac{\tau e^{-s \tau}}{1}\right|_{s=0}=\tau \Rightarrow X(s) \text { converge at } s=0
\end{aligned}
$$

- Example 8: Laplace transform of complex exponential signal

$$
\begin{gathered}
x(t)=e^{j \omega_{0} t} u(t) \\
X(s)=\int_{-\infty}^{\infty} e^{j \omega_{0} t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{\left(j \omega_{0}-s\right) t} d t=\left.\frac{e^{\left(j \omega_{0} t-s t\right)}}{j \omega_{0}-s}\right|_{0} ^{\infty}=\frac{1}{s-j \omega_{0}}, \\
\operatorname{Re}\{s\}>0
\end{gathered}
$$

Properties of Laplace Transform

Property	$\boldsymbol{x}(\boldsymbol{t})$	$\boldsymbol{X}(s)$	ROC
Linearity	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	$\supset\left(R_{1} \cap R_{2}\right)$
Delay by T	$x(t-T)$	$X(s) e^{-s T}$	R
Multiply by t	$t x(t)$	$-d X(s) / d s$	R
Multiply by $e^{-\alpha t}$	$x(t) e^{-\alpha t}$	$X(s+\alpha)$	Shift R by $-\alpha$
Scaling in t	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	$a R$
Differentiate in t	$d x(t) / d t$	$s X(s)$	$\supset R$
Integrate in t	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{X(s)}{s}$	$\supset(R \cap(\operatorname{Re}(s)>0))$
Convolve in t	$x_{1} * x_{2}(t)$	$X_{1}(s) X_{2}(s)$	$\supset\left(R_{1} \cap R_{2}\right)$

Laplace Transform Pairs

1	$\delta(t)$	1	All s
2	$u(t)$	$1 / s$	$\operatorname{Re}\{s\}>0$
3	$-u(-t)$	$1 / s$	$\operatorname{Re}\{s\}<0$
4	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\}>0$
5	$-t^{n} u(-t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}\{s\}<0$
6	$e^{-a t} u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\}>-a$
7	$-e^{-a t} u(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\}<-a$

8	$t^{n} e^{-a t} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\}>-a$
9	$-t^{n} e^{-a t} u(-t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{Re}\{s\}<-a$
10	$\left[\cos \omega_{0} t\right] u(t)$	$\frac{s}{s^{2}+\omega_{0}^{2}}$	$\operatorname{Re}\{s\}>0$
11	$\left[\sin \omega_{0} t\right] u(t)$	$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$	$\operatorname{Re}\{s\}>0$
12	$\left[e^{-a t} \cos \omega_{0} t\right] u(t)$	$\frac{s+a}{(s+a)^{2}+\omega_{0}^{2}}$	$\operatorname{Re}\{s\}>-a$
13	$\left[e^{-a t} \sin \omega_{0} t\right] u(t)$	$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}$	$\operatorname{Re}\{s\}>-a$

- Example 9: Laplace transform of a truncated sine functio

$$
X(s)=\int_{0}^{1} \sin (\pi t) e^{-s t} d t=\frac{1}{2 j} \int_{0}^{1}\left(e^{j \pi t}-e^{-j \pi t}\right) e^{-s t} d t=\frac{\pi\left(1+e^{-s}\right)}{s^{2}+\pi^{2}}
$$

Another method

$$
\begin{aligned}
& x(t)=\sin (\pi t) u(t)+\sin (\pi[t-1]) u(t-1) \\
& X(s)=\frac{\pi}{s^{2}+\pi^{2}}+\frac{\pi}{s^{2}+\pi^{2}} e^{-s}=\frac{\pi\left(1+e^{-s}\right)}{s^{2}+\pi^{2}}
\end{aligned}
$$

ROC: entire s-plane except points where

$$
\operatorname{Re}\{s\} \rightarrow-\infty
$$

- Example 10: Using the convolution property of the Laplace transform

$$
x_{1}(t)=e^{-t} u(t), x_{2}(t)=\delta(t)-e^{-2 t} u(t)
$$

Determine $x(t)=x_{1}(t) * x_{2}(t)$ using Laplace transform techniques.

$$
\begin{aligned}
& X_{1}(s)=\frac{1}{s+1}, \quad \text { ROC: } \operatorname{Re}\{s\}>-1 \\
& X_{2}(s)=1-\frac{1}{s+2}=\frac{s+1}{s+2}, \quad \text { ROC: } \operatorname{Re}\{s\}>-2 \\
& X(s)=X_{1}(s) X_{2}(s)=\frac{1}{s+2}, \quad \text { ROC: } \operatorname{Re}\{s\}>-2 \\
& x(t)=\mathcal{L}^{-1}\{X(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}=e^{-2 t} u(t)
\end{aligned}
$$

Initial Value Theorem

For a function x with Laplace transform X, if x is causal and contains no impulses or higher order singularities at the origin, then:

$$
x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)
$$

- When X is known but x is not, the initial value theorem eliminates the need to explicitly find x in order to evaluate $x\left(0^{+}\right)$.
- Example 11: Calculate the initial value of the function $x(t)$, whose LT is:

$$
x\left(0^{+}\right)=\lim _{t \rightarrow 0^{+}} x(t)=\lim _{s \rightarrow \infty} s X(s)=\lim _{s \rightarrow \infty} \frac{2 s(s+1)}{(s+1)^{2}+5^{2}}=2
$$

$$
X(s)=\frac{2(s+1)}{(s+1)^{2}+5^{2}}
$$

Verification: $x(t)=2 e^{-t} \cos (5 t) u(t)$

Final Value Theorem

For a function x with Laplace transform X, if x is causal and $x(t)$ has a finite limit as $t \rightarrow \infty$, then:

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)
$$

- When X is known but x is not, the final value theorem eliminates the need to explicitly find x in order to evaluate limit ${ }_{t \rightarrow \infty} x(t)$.
- Example 12: Calculate the final value of the function $x(t)$, whose Laplace transform is:

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)=\lim _{s \rightarrow 0} \frac{s(s+2)}{s(s+1)}=\lim _{s \rightarrow 0} \frac{s+2}{s+1}=2
$$

$$
X(s)=\frac{s+2}{s(s+1)}
$$

Verification: $x(t)=\left(2-e^{-t}\right) u(t)$

Inverse Laplace Transform

The inverse LT x of X is given by $L^{-1}\{X(s)\}=x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s$, where $\operatorname{Re}(s)=\sigma$ is in the ROC of X.

- We do not usually compute the inverse Laplace transform directly using the above equation.
- For rational functions, the inverse Laplace transform can be more easily computed using partial fraction expansions (PFE).
- Example 13: Calculate the inverse LT of the function $H(s)=1 /(s+a)$

$$
\begin{array}{ll}
h(t)=e^{-a t} u(t) & \text { with ROC: } \operatorname{Re}\{s\}>-a \\
h(t)=-e^{-a t} u(-t) & \text { with ROC: } \operatorname{Re}\{s\}<-a
\end{array}
$$

- Example 14: Using PFE with complex poles

The Laplace transform of a signal $x(t)$ is $X(s)=\frac{s+1}{s\left(s^{2}+9\right)}$ with the ROC specified as $\operatorname{Re}\{s\}>0$. Determine $x(t)$.

$$
\begin{aligned}
& X(s)=\frac{k_{1}}{s}+\frac{k_{2}}{s+j 3}+\frac{k_{3}}{s-j 3} \\
& k_{1}=\frac{1}{9}, \quad k_{2}=-\frac{1}{18}+j \frac{1}{6}, \quad k_{3}=\frac{1}{18}-j \frac{1}{6} \quad \text { Based } \\
& x(t)=\frac{1}{9} u(t)-\frac{1}{18}\left[e^{-j 3 t}+e^{j 3 t}\right] u(t)+j \frac{1}{6}\left[e^{-j 3 t}-e^{j 3 t}\right] u(t) \\
& x(t)=\frac{1}{9} u(t)-\frac{1}{9} \cos (3 t) u(t)+\frac{1}{3} \sin (3 t) u(t)
\end{aligned}
$$

Based on the specified ROC, the signal $x(t)$ is causal

- Example 15: Multiple-order poles

A causal signal $x(t)$ has the Laplace transform $X(s)=\frac{s(s+1)}{(s+1)^{3}(s+2)}$

$$
\begin{aligned}
& X(s)=\frac{s(s+1)}{(s+1)^{3}(s+2)}=\frac{-3}{s+1}+\frac{3}{(s+1)^{2}}-\frac{2}{(s+1)^{3}}+\frac{3}{s+2} \\
& L\left\{e^{-t} u(t)\right\}=\frac{1}{s+1}, \quad L\left\{t e^{-t} u(t)\right\}=-\frac{d}{d s}\left[\frac{1}{s+1}\right]=\frac{1}{(s+1)^{2}} \\
& L\left\{t^{2} e^{-t} u(t)\right\}=-\frac{d}{d s}\left[\frac{1}{(s+1)^{2}}\right]=\frac{2}{(s+1)^{3}} \\
& x(t)=-3 e^{-t} u(t)+3 t e^{-t} u(t)-t^{2} e^{-3 t} u(t)+3 e^{-2 t} u(t)
\end{aligned}
$$

3. Using the Laplace Transform with CTLTI Systems Transfer Function and LTI Systems

- Since $y(t)=x(t) * h(t)$, the system is characterized in the Laplace domain by $Y(s)=X(s) H(s)$.
- $H(s)$ is the transfer function (or system function) of the system.
- A LTI system is completely characterized by its transfer function H.

Relating the transfer function to the differential equation

- Many LTI systems of practical interest can be represented using an Nth-order linear differential equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form:

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}
$$

where the a_{k} and b_{k} are complex constants and

$$
\begin{aligned}
& \mathcal{L}\left\{\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}\right\}= \mathcal{L}\left\{\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}\right\} \Rightarrow \sum_{k=0}^{N} \mathcal{L}\left\{a_{k} \frac{d^{k} y(t)}{d t^{k}}\right\}=\sum_{k=0}^{M} \mathcal{L}\left\{b_{k} \frac{d^{k} x(t)}{d t^{k}}\right\} \\
& \sum_{k=0}^{N} a_{k} \mathcal{L}\left\{\frac{d^{k} y(t)}{d t^{k}}\right\}=\sum_{k=0}^{M} b_{k} \mathcal{L}\left\{\frac{d^{k} x(t)}{d t^{k}}\right\} \\
& \sum_{k=0}^{N} a_{k} s^{k} Y(s)=\sum_{k=0}^{M} b_{k} s^{k} X(s) \Rightarrow H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}}
\end{aligned}
$$

- The transfer function is always rational.
- The impulse response of the system $h(t)=\mathcal{L}^{-1}\{H(s)\}$.
- The convolution operation is only applicable to problems involving LTI systems.
- Therefore it follows that the transfer function concept is meaningful only for systems that are both linear and time invariant.
- In determining the transfer function from the differential equation, all initial conditions must be assumed to be zero.
- Example 16: Finding the transfer function from the DE

A CTLTI system is defined by means of the differential equation:

$$
\frac{d^{3} y(t)}{d t^{3}}+5 \frac{d^{2} y(t)}{d t^{2}}+17 \frac{d y(t)}{d t}+13 y(t)=\frac{d^{2} x(t)}{d t^{2}}+x(t)
$$

$$
s^{3} Y(s)+5 s^{2} Y(s)+17 s Y(s)+13 Y(s)=s^{2} X(s)+X(s)
$$

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{s^{2}+1}{s^{3}+5 s^{2}+17 s+13}
$$

Transfer function and causality

- Theorem: For a LTI system with a rational transfer function H, causality of the system is equivalent to the ROC of H being the right sided to the right of the rightmost pole or, if H has no poles, the entire complex plane.
- For a CTLTI system to be causal, its impulse response $h(t)$ needs to be equal to zero for $t<0$.

$$
H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t=\int_{0}^{\infty} h(t) e^{-s t} d t
$$

- Consider a transfer function in the form:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\cdots+b_{1} s+b_{0}}{a_{N} s^{N}+a_{N-1} s^{N-1}+\cdots+a_{1} s+a_{0}}
$$

For the system described by $H(s)$ to be causal we need:

$$
\lim _{s \rightarrow \infty} H(s)=\lim _{s \rightarrow \infty} \frac{b_{M}}{a_{N}} s^{M-N}<\infty \Leftrightarrow M-N \leq 0 \Rightarrow M \leq N
$$

Causality condition:

- In the transfer function of a causal CTLTI system the order of the numerator must not be greater than the order of the denominator.

Transfer function and stability:

- For a CTLTI system to be stable its impulse response must be absolute integrable.

$$
\int_{-\infty}^{\infty}|h(t)| d t<\infty
$$

Stability condition:

- For a CTLTI system to be stable, the ROC of its s-domain transfer function must include the imaginary axis.
- For a causal system to be stable, the transfer function must not have any poles on the imaginary axis or in the right half s-plane.
- For a anticausal system to be stable, the transfer function must not have any poles on the imaginary axis or in the right half s-plane.
- For a noncausal system the ROC for the transfer function, if it exists, is the region expressed in the form $\sigma_{1}<\operatorname{Re}\{s\}<\sigma_{2}$. For stability we need $\sigma_{1}<0$ and $\sigma_{2}>0$. The poles of the transfer function may be either:
a. On or to the left of the vertical line $\sigma=\sigma_{1}$
b. On or to the right of the vertical line $\sigma=\sigma_{2}$
- Example 17: Impulse response of a stable system A stable system is characterized by the transfer function:

$$
H(s)=\frac{15 s(s+1)}{(s+3)(s-1)(s-2)}
$$

Determine the ROC of the TF. Afterwards find the impulse response of the system.

The 3 poles are at $s=-3,1,2$. Since the system is known to be stable, its ROC must include the j - ω axis. The only possible choice is $-3<\operatorname{Re}\{s\}<1$.

$$
\begin{gathered}
H(s)=\frac{4.5}{s+3}-\frac{7.5}{s-1}+\frac{18}{s-2} \\
h(t)=4.5 e^{-3 t} u(t)+7.5 e^{t} u(-t)-18 e^{2 t} u(-t)
\end{gathered}
$$

Interconnection of LTI Systems

- The series interconnection of the LTI systems with transfer functions H_{1} and H_{2} is the LTI system with transfer function $H_{1} H_{2}$.

- The parallel interconnection of the LTI systems with transfer functions H_{1} and H_{2} is the LTI system with transfer function $H_{1}+H_{2}$.

