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Application: Circuit Analysis

▪ A resistor ( ) ( ) or ( ) ( )1
R R R RRv t Ri t i t v t= =

Electronic Circuits

▪ An inductor ( ) ( ) or ( ) ( )
1 t

L L L L

d
v t L i t i t v d
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▪ A capacitor

( ) ( ) or ( ) ( )
1

C C C CV s I s I s sCV s
sC

= =

( ) ( ) or ( ) ( )
1 t

C C C C

d
v t i d i t C v t

C dt
 

−
= =

https://manara.edu.sy/


https://manara.edu.sy/Laplace Transform for Continuous-Time Signals and Systems 4/342023-2024

Application: Design and Analysis of Control Systems

Control Systems

▪ The desired values of the quantities being controlled are collectively viewed 

as the input of the control system.

▪ The actual values of the quantities being controlled are collectively viewed as 

the output of the control system.

▪ A control system whose behavior is not influenced by the actual values of the 

quantities being controlled is called an open loop (or non-feedback) system.

▪ A control system whose behavior is influenced by the actual values of the 

quantities being controlled is called a closed loop (or feedback) system.

▪ An example of a simple control system would be a thermostat system, which 

controls the temperature in a room or building.
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Feedback Control Systems

Controller Plant+

Sensor

Reference Input OutputError

−

Feedback Signal

▪ input: desired value of the quantity to be controlled.

▪ output: actual value of the quantity to be controlled.

▪ error: difference between the desired and actual values.

▪ plant: system to be controlled.

▪ controller: device that monitors the error and changes the input of the plant. 

with the goal of forcing the error to zero.
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A control system includes two very important components:

▪ Transducer: Since it is possible that the output signal y(t) and the reference 

signal x(t) might not be of the same type, a transducer is used to change y(t) 
so it is compatible with the reference input x(t). 

▪ Actuator: A device that makes possible the execution of the control action on 

the plant, so that the output of the plant follows the reference input.

Stability Analysis of Feedback Systems

▪ Often, we want to ensure that a system is BIBO stable.

▪ The BIBO stability property is more easily characterized in the Laplace domain 

than in the time domain.

▪ sensor: device used to measure the actual output.
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Example 1: Stabilization Example: Unstable Plant

▪ Causal LTI plant X Y
( )P s

s
=

−

10

1 1

ROC

s-plane



▪ System is not BIBO stable

Example 2: Stabilization Example: Using Pole-Zero Cancellation

▪ System formed by series interconnection of plant and causal LTI compensator:

( )
( )

s
W s

s

−
=

+

1

10 1
( )P s

s
=

−

10

1
X Y

( ) ( ) ( )
( ) ( )

s
H s W s P s

s s s

−
= = =

+ − +

1 10 1

10 1 1 1

▪ Transfer function H of overall system (BIBO stable): −1

ROC

s-plane

 

Cancelled
pole

1
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Example 3: Stabilization Example: Using Feedback

▪ Feedback system (with causal LTI compensator and sensor):

( )C s = ( )P s
s

=
−

10

1
+

( )Q s = 1

X YR

−

1−10

ROC

s-plane



▪ Feedback system is BIBO stable if and only if 1−10 < 0.

( ) ( )
( )

( ) ( ) ( ) ( )

C s P s
H s

C s P s Q s s




= =

+ − −

10

1 1 10

▪ Transfer function H of overall system:
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4. Bode Plots

▪ Bode plots of the frequency response are used in the analysis and design of 

feedback control systems. A Bode plot consists of the dB magnitude 

20 log10|H(w)| and the phase ∡H(w), each graphed as a function of log10 (w).

( / )( / ) ( / )
( )

( / )( / ) ( / )

M

N

s z s z s z
H s K

s p s p s p

− − −
=

− − −

1 2
1

1 2

1 1 1

1 1 1

▪ Let us write H(s) as a cascade combination of M + N subsystems:

( ) ( ) ( ) ( ) ( ) ( ) ( )M M M M NH s K H s H s H s H s H s H s+ + += 1 1 2 1 2

with ( ) / , , , 

( ) , , , 
/

i i

M i
i

H s s z i M

H s i N
s p+

= − =

= =
−

1 1

1
1

1
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▪ Zero at the origin

( ) log ( ) log ( ), ( )10 1020 20 90k k kH s s H Hw w w=  = =

▪ Pole at the origin

( ) / log ( ) log ( ), ( )10 101 20 20 90k k kH s s H Hw w w=  = − = −

dB magnitude for Hk (s) = s,         dB magnitude for Hk (s) = 1/s
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▪ Single real zero

( ) ( ) /1k k ks j
H H s j z

w
w w

=
= = −

( ) ( )

( ) ( ) ( )

log ( ) log 1 / 1 log 1 / ,

( ) / tan / tan /

2 2
10 10 10

1 1

20 20 0

1

k k k

k k k k

H z z

H j z z z

w w w

w w w w− −

 = + = +
 

= − = − = −

Magnitude: For w << |zk| the magnitude is asymptotic to 0 dB. For w >> |zk | it 

becomes asymptotic to a straight line with a slope of 20 dB per decade. At 

w = |zk | it is approximately equal to 3 dB.

Phase: For w << |zk| the phase is asymptotic to 0˚. For w >> |zk | the phase is 

90˚ for zk < 0 and −90˚ for zk > 0. At w = |zk | the phase is 45˚ for zk < 0 and −45˚ 

for zk > 0.
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zk < 0

zk > 0
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▪ Single real pole

( ) ( ) /( / )1 1k k ks j
H H s j p

w
w w

=
= = −

log ( ) log 1 log 1 ( / ) ,
1 ( / )

( ) /( / ) tan ( / ) tan ( / )

2
10 10 102

1 1

1
20 20 0

1 1

k k

k

k k k k

H p
p

H j p p p

w w
w

w w w w− −

 = = − +
 

+

= − = − − =

Magnitude: For w << |pk| the magnitude is asymptotic to 0 dB. For w >> |pk | it 

becomes asymptotic to a straight line with a slope of  −20 dB per decade. At 

w = |pk | it is approximately equal to −3 dB.

Phase: For w << |pk| the phase is asymptotic to 0˚. For w >> |pk | the phase is 

−90˚ for pk < 0 and 90˚ for pk > 0. At w = |pk | the phase is −45˚ for zk < 0 and 45˚ 

for zk > 0.
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pk < 0

pk > 0
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▪ Example 4: Constructing a Bode plot

( / )
( )

( / )( / )

s s
H s

s s

+
=

+ +

1 300

1 5 1 40
( ) ( ) ( ) ( ) ( )H s H s H s H s H s= 1 2 3 4

( ) , ( ) ( / ), ( ) /( / ), ( ) /( / )H s s H s s H s s H s s= = + = + = +1 2 3 41 300 1 1 5 1 1 40
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▪ Conjugate pair of poles

Consider a causal and stable second-order system with a pair of complex 

conjugate poles, that is, p p=2 1

( )
( / )( / ) ( )( )

p
H s

s p s p s p s p 
= =

− − − −

2
1

1 1 1 1

1

1 1

Let us put H(s) into the standard form ( )
2
0

2 2
0 02

H s
s s

w

w w
=

+ +

Re{ }
,
22 1

0 1
1

p
p

p
w = = −

Since the system is causal and stable, Re {p1} < 0. Consequently, when the 

poles of the system form a complex conjugate pair, we have 0 <  < 1.
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▪ Analysis of the second-order system

( )
( / )( / ) ( )( )

p p
H s

s p s p s p s p
= =

− − − −

1 2

1 2 1 2

1

1 1

, Re{ } Re{ }2
0 1 2 0 1 22p p p pw w= = − −

The parameter w0 is called the natural undamped frequency of the system. 

The parameter  is called the damping ratio.

Re{ } Re{ }
, 1 2

0 1 2
1 22

p p
p p

p p
w 

− −
= =

2
1 2 0 0 1,p w w = −  −

 > 1: The poles p1 and p2 are real-valued and distinct. The system is said to 

be overdamped.
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 = 1: The 2 poles are p1 = p2 = −w0. The system is said to be critically damped.

 < 1: The two poles are a complex conjugate pair:

In this case the system is said to be underdamped.

2
1 2 0 0 01, dp j jw w  w w= −  − = − 
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( ) 1 / /
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( / )
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1 ( / )
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0

2 2 2
0 0 0 0

2 22
10 10 0 0

1 0
2

0

1

2 2

20 10 2

2
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j j j

H

H
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w

w w w w w w  w w

w w w  w w

 w w
w

w w

−

= =
+ + − +

    = − − +    

 
= −  

− 
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Define the quality factor as /Q = 1 2

Magnitude: For w << w0 the magnitude is asymptotic to 0 dB. For w >> w0 it 

becomes asymptotic to a straight line with a slope of −40 dB per decade. At 

w = w0 the actual magnitude is 20 log10 Q = −20 log10 (2).

Phase: For w << w0 the phase is asymptotic to 0°. For w >> w0 the phase is 

−180°. At w = w0 the phase is −90°.
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Overdamped:  > 1 ⇒ Q < 0.5

Critically damped:  = 1 ⇒ Q = 0.5

Underdamped:  < 1 ⇒ Q > 0.5

▪ The response of the second-order system to unit-impulse: ( )
k k

H s
s p s p

= +
− −

1 2

1 2
,1 2 0 1 2 0

1 22 2
1 2 2 12 1 2 1

p p p p
k k

p p p p

w w

 
= = = = −

− −− −
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( )
2 2

0 01 2 0 1 10
1 2 22 1

t tp t p t th t k e k e e e ew  w ww



− − −−  = + = −
  −

If  < 1, ( )( ) sin ( )0 20
02

1
1

th t e t u tww
w 



−
= −

−

If  = 1, ( ) ( ) ( )
( )

020
02

0

tH s h t te u t
s

ww
w

w

−
=  =

+

▪ The response of the second-order system to unit-step:

{ ( )} ( ) ( ) ( ) ,
t

T u t h t u t h d t =  = 0 0

{ ( )} [ ] ( )
p t p tT u t p e p e u t

p p
= + −

−
1 2

2 1
1 2

1
1If   1,
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( )

( )

{ ( )}

( )

0 2
0

2
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0 02
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12
0 0

1 1
2 1

1

t
t

t

e
T u t e

e u t

w 
w − 

w − 

w  w − 
w − 

w  w − 

−

−
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{ ( )}T u t

5. Simulation Structures for CTLTI Systems

Direct-form implementation

▪ The method of obtaining a block diagram from an s-domain TF will be derived 

using a third-order system, but its generalization to higher-order TF is quite 

straightforward. Consider a CTLTI system described by a TF H(s):
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( )
( )

( )

b s b s bY s
H s

X s s a s a s a

+ +
= =

+ + +

2
2 1 0

3 2
2 1 0

Let us use an intermediate function W(s)

( ) ( )
( )

( ) ( )

b s b s b sY s W s
H s

W s X s a s a s a s

− − −

− − −

+ +
= =

+ + +

1 2 3
2 1 0

1 2 3
2 1 01

( ) ( )
( ) , ( )

( ) ( )

W s Y s
H s H s b s b s b s

X s W sa s a s a s
− − −

− − −
= = = = + +

+ + +

1 2 3
1 2 2 1 01 2 3

2 1 0

1

1

( ) ( ) ( ) ( ) ( )W s X s a s W s a s W s a s W s− − −= − − −1 2 3
2 1 0

( ) ( ) ( ) ( )Y s b s W s b s W s b s W s− − −= + +1 2 3
2 1 0
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Completed block diagram for simulating the transfer function H(s)
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▪ Example 5: Obtaining a block diagram from transfer function

A CTLTI system is described through the transfer function:

( )
( )

( )

Y s s s
H s

X s s s s s

− +
= =

+ + + +

3

4 3 2

2 26 24

7 21 37 30
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Cascade and parallel forms

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
M

M

W s W s Y s
H s H s H s H s

X s W s W s−

= = 1 2
1 2

1 1

Cascade form

▪ Example 6: Obtaining a block diagram from transfer function

( ) ( )( )( )
( )

( ) ( )( )( )( )

Y s s s s
H s

X s s j s j s s

+ − −
= =

+ − + + + +

2 4 3 1

1 2 1 2 3 2

Develop a cascade form block diagram for simulating the system used in 

example 2.
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( ) ( ) ( ) ( )H s H s H s H s= 1 2 3

( )
( ) , ( ) , ( )

( )( )

s s s s
H s H s H s

s j s j s ss s

+ + − −
= = = =

+ − + + + ++ +
1 2 32

2 4 2 8 3 1

1 2 1 2 3 22 5

Further simplified cascade form block diagram
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Parallel form
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

M
M

W s W s W s
H s H s H s H s

X s X s X s
= + + + = + + +1 2

1 2

▪ Example 7: Obtaining a block diagram from transfer function

Develop a parallel form BD for simulating the system used in example 2.
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( )
s

H s
s ss s

+ −
= + +

+ ++ +2

2 8 12 6

2 32 5
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6. Unilateral Laplace Transform

The unilateral Laplace transform of the function x is defined as:

{ ( )} ( ) ( ) st
u x t X s x t e dt

−

 −= = 0L

▪ The unilateral LT is related to the bilateral Laplace transform as follows:

{ ( )} ( ) ( ) ( ) { ( ) ( )}st st
u x t x t e dt x t u t e dt x t u t

−

 − −

−
= = = 0

L L

▪ With the unilateral LT, the same inverse transform equation is used as in the 

bilateral case.

▪ The unilateral LT is only invertible for causal functions.

▪ For a noncausal function x, we can only recover x(t) for t ≥ 0.
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Unilateral Versus Bilateral Laplace Transform

▪ The time-domain convolution property has the additional requirement that the 

functions being convolved must be causal.

▪ The time/Laplace-domain scaling property has the additional constraint that 

the scaling factor must be positive.

▪ The time-domain differentiation property has an extra term in the expression 

of Lu(dx(t)/dt), namely −x(0−).

▪ The time-domain integration property has a different lower limit in the time-

domain integral (0− instead of −∞);

▪ The time-domain shifting property does not hold (except in special cases).

In the unilateral case:
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Properties of the Unilateral Laplace Transform

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩ R2)

Multiply by t t x(t) −dX(s)/ds R

Multiply by e−αt x(t)e−αt X(s + a) Shift R by −a

Scaling in t x(at), a > 0 aR

Differentiate in t dx(t)/dt sX(s) – x(0−) ⊃ R

Integrate in t ⊃ (R ∩ (Re(s) > 0))

Convolve in t x1  x2(t) X1(s) X2(s) ⊃ (R1 ∩ R2)

( )
t
x d 

−0
( )X s
s

( )
s

X
a a
1
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Unilateral Laplace Transform Pairs

1

2

3

4

5

( )

!

!

( )

n
n

at

n at
n

t

s
n

t
s

e
s a
n

t e
s a



+

−

−

+

+

+

1

1

1

1
1

1

cos

sin

cos
( )

sin
( )

0 2 2
0

0
0 2 2

0

0 2 2
0

0
0 2 2

0

at

at

s
t

s

t
s

s a
e t

s a

e t
s a

w
w

w
w

w

w
w

w
w

w

−

−

+

+

+

+ +

+ +

6

7

8

9

Pair   x(t); t  0    X(s) Pair x(t); t  0 X(s)
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