CRCC507: Signals and Systems

Lecture Notes 10: Laplace Transiorm for Continuous-Time Signals and Systems: Part B

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Mechatronics Manara University

\gg
 جَــامعة الـَمَـنارة
 Chapter 7
 Laplace Transform for Continuous-Time Signals and Systems
 1 Introduction
 2 Laplace Transform
 3 Using the Laplace Transform with CTLTI Systems
 4 Bode Plots
 5 Simulation Structures for CTLTI Systems
 6 Unilateral Laplace Transform

Application: Circuit Analysis

Electronic Circuits

- A resistor $\quad v_{R}(t)=R i_{R}(t) \quad$ or $\quad i_{R}(t)=\frac{1}{R} v_{R}(t)$

$$
V_{R}(s)=R I_{R}(s) \quad \text { or } \quad I_{R}(s)=\frac{1}{R} V_{R}(s)
$$

- An inductor $v_{L}(t)=L \frac{d}{d t} i_{L}(t) \quad$ or $\quad i_{L}(t)=\frac{1}{L} \int_{-\infty}^{t} v_{L}(\tau) d \tau$

$$
V_{L}(s)=s L I_{L}(s) \quad \text { or } \quad I_{L}(s)=\frac{1}{s L} V_{L}(s)
$$

- A capacitor $v_{C}(t)=\frac{1}{C} \int_{-\infty}^{t} i_{C}(\tau) d \tau \quad$ or $\quad i_{C}(t)=C \frac{d}{d t} v_{C}(t)$

$$
V_{C}(s)=\frac{1}{s C} I_{C}(s) \quad \text { or } \quad I_{C}(s)=s C V_{C}(s)
$$

Application: Design and Analysis of Control Systems

Control Systems

- The desired values of the quantities being controlled are collectively viewed as the input of the control system.
- The actual values of the quantities being controlled are collectively viewed as the output of the control system.
- A control system whose behavior is not influenced by the actual values of the quantities being controlled is called an open loop (or non-feedback) system.
- A control system whose behavior is influenced by the actual values of the quantities being controlled is called a closed loop (or feedback) system.
- An example of a simple control system would be a thermostat system, which controls the temperature in a room or building.

Feedback Control Systems

- input: desired value of the quantity to be controlled.
- output: actual value of the quantity to be controlled.
- error: difference between the desired and actual values.
- plant: system to be controlled.
- controller: device that monitors the error and changes the input of the plant. with the goal of forcing the error to zero.
- sensor: device used to measure the actual output.

A control system includes two very important components:

- Transducer: Since it is possible that the output signal $y(t)$ and the reference signal $x(t)$ might not be of the same type, a transducer is used to change $y(t)$ so it is compatible with the reference input $x(t)$.
- Actuator: A device that makes possible the execution of the control action on the plant, so that the output of the plant follows the reference input.

Stability Analysis of Feedback Systems

- Often, we want to ensure that a system is BIBO stable.
- The BIBO stability property is more easily characterized in the Laplace domain than in the time domain.

Example 1: Stabilization Example: Unstable Plant

Example 2: Stabilization Example: Using Pole-Zero Cancellation

- System formed by series interconnection of plant and causal LTI compensator:

$$
\xrightarrow{X} W(s)=\frac{s-1}{10(s+1)} \rightarrow P(s)=\frac{10}{s-1} \xrightarrow{Y}
$$

- Transfer function H of overall system (BIBO stable):

$$
H(s)=W(s) P(s)=\frac{s-1}{10(s+1)} \frac{10}{s-1}=\frac{1}{(s+1)}
$$

Example 3: Stabilization Example: Using Feedback

- Feedback system (with causal LTI compensator and sensor):

- Transfer function H of overall system:

- Feedback system is BIBO stable if and only if $1-10 \beta<0$.

4. Bode Plots

- Bode plots of the frequency response are used in the analysis and design of feedback control systems. A Bode plot consists of the dB magnitude $20 \log _{10}|H(\omega)|$ and the phase $\Varangle H(\omega)$, each graphed as a function of $\log _{10}(\omega)$.

$$
H(s)=K_{1} \frac{\left(1-s / z_{1}\right)\left(1-s / z_{2}\right) \cdots\left(1-s / z_{M}\right)}{\left(1-s / p_{1}\right)\left(1-s / p_{2}\right) \cdots\left(1-s / p_{N}\right)}
$$

- Let us write $H(s)$ as a cascade combination of $M+N$ subsystems:

$$
H(s)=K_{1} H_{1}(s) H_{2}(s) \cdots H_{M}(s) H_{M+1}(s) H_{M+2}(s) \cdots H_{M+N}(s)
$$

with

$$
\begin{aligned}
& H_{i}(s)=1-s / z_{i}, \quad i=1, \cdots, M \\
& H_{M+i}(s)=\frac{1}{1-s / p_{i}}, \quad i=1, \cdots, N
\end{aligned}
$$

- Zero at the origin

$$
H_{k}(s)=s \Rightarrow 20 \log _{10}\left|H_{k}(\omega)\right|=20 \log _{10}(\omega), \quad \measuredangle H_{k}(\omega)=90^{\circ}
$$

- Pole at the origin

$$
\begin{aligned}
& H_{k}(s)=1 / s \Rightarrow 20 \log _{10}\left|H_{k}(\omega)\right|=-20 \log _{10}(\omega), \quad \measuredangle H_{k}(\omega)=-90^{\circ} \\
& d B \text { magnitude for } H_{k}(s)=s, \quad d B \text { magnitude for } H_{k}(s)=1 / s
\end{aligned}
$$

- Single real zero

$$
\begin{aligned}
H_{k}(\omega)= & \left.H_{k}(s)\right|_{s=j \omega}=1-j \omega / z_{k} \\
& 20 \log _{10}\left|H_{k}(\omega)\right|=20 \log _{10} \sqrt{1+\left(\omega / z_{k}\right)^{2}}=10 \log _{10}\left[1+\left(\omega / z_{k}\right)^{2}\right], \\
& \measuredangle H_{k}(\omega)=\measuredangle\left(1-j \omega / z_{k}\right)=\tan ^{-1}\left(-\omega / z_{k}\right)=-\tan ^{-1}\left(\omega / z_{k}\right)
\end{aligned}
$$

Magnitude: For $\omega \ll\left|z_{k}\right|$ the magnitude is asymptotic to 0 dB . For $\omega \gg\left|z_{k}\right|$ it becomes asymptotic to a straight line with a slope of 20 dB per decade. At $\omega=\left|z_{k}\right|$ it is approximately equal to 3 dB .

Phase: For $\omega \ll\left|z_{k}\right|$ the phase is asymptotic to 0°. For $\omega \gg\left|z_{k}\right|$ the phase is 90° for $z_{k}<0$ and -90° for $z_{k}>0$. At $\omega=\left|z_{k}\right|$ the phase is 45° for $z_{k}<0$ and -45° for $z_{k}>0$.

حَــامعة
الـَمَـنارة

- Single real pole

$$
\begin{aligned}
H_{k}(\omega)= & \left.H_{k}(s)\right|_{s=j \omega}=1 /\left(1-j \omega / p_{k}\right) \\
& 20 \log _{10}\left|H_{k}(\omega)\right|=20 \log _{10} \frac{1}{\sqrt{1+\left(\omega / p_{k}\right)^{2}}}=-10 \log _{10}\left[1+\left(\omega / p_{k}\right)^{2}\right], \\
& \measuredangle H_{k}(\omega)=\measuredangle 1 /\left(1-j \omega / p_{k}\right)=-\tan ^{-1}\left(-\omega / p_{k}\right)=\tan ^{-1}\left(\omega / p_{k}\right)
\end{aligned}
$$

Magnitude: For $\omega \ll\left|p_{k}\right|$ the magnitude is asymptotic to 0 dB . For $\omega \gg\left|p_{k}\right|$ it becomes asymptotic to a straight line with a slope of -20 dB per decade. At $\omega=\left|p_{k}\right|$ it is approximately equal to -3 dB .
Phase: For $\omega \ll\left|p_{k}\right|$ the phase is asymptotic to 0°. For $\omega \gg\left|p_{k}\right|$ the phase is -90° for $p_{k}<0$ and 90° for $p_{k}>0$. At $\omega=\left|p_{k}\right|$ the phase is -45° for $z_{k}<0$ and 45° for $z_{k}>0$.

حَــامعة
الـَمَـنارة

- Example 4: Constructing a Bode plot

$$
\begin{aligned}
& H(s)=\frac{s(1+s / 300)}{(1+s / 5)(1+s / 40)} \\
& H(s)=H_{1}(s) H_{2}(s) H_{3}(s) H_{4}(s) \\
& H_{1}(s)=s, \quad H_{2}(s)=(1+s / 300), \quad H_{3}(s)=1 /(1+s / 5), \quad H_{4}(s)=1 /(1+s / 40) \\
& 20 \log _{10}|H(\omega)|
\end{aligned}
$$

- Conjugate pair of poles

Consider a causal and stable second-order system with a pair of complex conjugate poles, that is, $p_{2}=p_{1}^{*}$

$$
H(s)=\frac{1}{\left(1-s / p_{1}\right)\left(1-s / p_{1}^{*}\right)}=\frac{\left|p_{1}\right|^{2}}{\left(s-p_{1}\right)\left(s-p_{1}^{*}\right)}
$$

Let us put $H(s)$ into the standard form $H(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}$

$$
\omega_{0}^{2}=\left|p_{1}\right|^{2}, \quad \zeta=-\frac{\operatorname{Re}\left\{p_{1}\right\}}{\left|p_{1}\right|}
$$

Since the system is causal and stable, $\operatorname{Re}\left\{p_{1}\right\}<0$. Consequently, when the poles of the system form a complex conjugate pair, we have $0<\zeta<1$.

- Analysis of the second-order system

$$
\begin{aligned}
H(s) & =\frac{1}{\left(1-s / p_{1}\right)\left(1-s / p_{2}\right)}=\frac{p_{1} p_{2}}{\left(s-p_{1}\right)\left(s-p_{2}\right)} \\
\omega_{0}^{2} & =p_{1} p_{2}, \quad 2 \zeta \omega_{0}=-\operatorname{Re}\left\{p_{1}\right\}-\operatorname{Re}\left\{p_{2}\right\} \\
\omega_{0} & =\sqrt{p_{1} p_{2}}, \quad \zeta=\frac{-\operatorname{Re}\left\{p_{1}\right\}-\operatorname{Re}\left\{p_{2}\right\}}{2 \sqrt{p_{1} p_{2}}}
\end{aligned}
$$

The parameter ω_{0} is called the natural undamped frequency of the system. The parameter ζ is called the damping ratio.

$$
p_{1,2}=-\zeta \omega_{0} \pm \omega_{0} \sqrt{\zeta^{2}-1}
$$

$\zeta>1$: The poles p_{1} and p_{2} are real-valued and distinct. The system is said to be overdamped.
$\zeta=1$: The 2 poles are $p_{1}=p_{2}=-\zeta \omega_{0}$. The system is said to be critically damped.
$\zeta<1$: The two poles are a complex conjugate pair:

$$
p_{1,2}=-\zeta \omega_{0} \pm j \omega_{0} \sqrt{1-\zeta^{2}}=-\zeta \omega_{0} \pm j \omega_{d}
$$

In this case the system is said to be underdamped.

$$
\begin{aligned}
& H(\omega)=\frac{\omega_{0}^{2}}{(j \omega)^{2}+2 \zeta \omega_{0} j \omega+\omega_{0}^{2}}=\frac{1}{1-\left(\omega / \omega_{0}\right)^{2}+j 2 \zeta\left(\omega / \omega_{0}\right)} \\
& 20 \log _{10}|H(\omega)|=-10 \log _{10}\left\{\left[1-\left(\omega / \omega_{0}\right)^{2}\right]^{2}+\left[2 \zeta\left(\omega / \omega_{0}\right)\right]^{2}\right\} \\
& \measuredangle H(\omega)=-\tan ^{-1}\left[\frac{2 \zeta\left(\omega / \omega_{0}\right)}{1-\left(\omega / \omega_{0}\right)^{2}}\right]
\end{aligned}
$$

Define the quality factor as $Q=1 / 2 \zeta$
Magnitude: For $\omega \ll \omega_{0}$ the magnitude is asymptotic to 0 dB . For $\omega \gg \omega_{0}$ it becomes asymptotic to a straight line with a slope of -40 dB per decade. At $\omega=\omega_{0}$ the actual magnitude is $20 \log _{10} Q=-20 \log _{10}(2 \zeta)$.
Phase: For $\omega \ll \omega_{0}$ the phase is asymptotic to 0°. For $\omega \gg \omega_{0}$ the phase is -180°. At $\omega=\omega_{0}$ the phase is -90°.

Overdamped: $\zeta>1 \Rightarrow Q<0.5$
Critically damped: $\zeta=1 \Rightarrow Q=0.5$
Underdamped: $\zeta<1 \Rightarrow Q>0.5$

- The response of the second-order system to unit-impulse: $H(s)=\frac{k_{1}}{s-p_{1}}+\frac{k_{2}}{s-p_{2}}$

$$
k_{1}=\frac{p_{1} p_{2}}{p_{1}-p_{2}}=\frac{\omega_{0}}{2 \sqrt{\zeta^{2}-1}}, \quad k_{2}=\frac{p_{1} p_{2}}{p_{2}-p_{1}}=-\frac{\omega_{0}}{2 \sqrt{\zeta^{2}-1}}
$$

$$
h(t)=k_{1} e^{p_{1} t}+k_{2} e^{p_{2} t}=\frac{\omega_{0}}{2 \sqrt{\zeta^{2}-1}} e^{-\zeta \omega_{0} t}\left[e^{\omega_{0} \sqrt{\zeta^{2}-1} t}-e^{-\omega_{0} \sqrt{\zeta^{2}-1} t}\right]
$$

$$
\text { If } \zeta<1, h(t)=\frac{\omega_{0}}{\sqrt{\zeta^{2}-1}} e^{-\zeta \omega_{0} t} \sin \left(\omega_{0} \sqrt{\zeta^{2}-1} t\right) u(t)
$$

$$
\text { If } \zeta=1, H(s)=\frac{\omega_{0}}{\left(s+\omega_{0}\right)^{2}} \Rightarrow h(t)=\omega_{0}^{2} t e^{-\omega_{0} t} u(t)
$$

- The response of the second-order system to unit-step:

$$
\begin{gathered}
T\{u(t)\}=h(t) * u(t)=\int_{0}^{t} h(\tau) d \tau, \quad t \geq 0 \\
\text { If } \zeta \neq 1, T\{u(t)\}=1+\frac{1}{p_{1}-p_{2}}\left[p_{2} e^{p_{1} t}-p_{1} e^{p_{2} t}\right] u(t)
\end{gathered}
$$

$$
\begin{aligned}
T\{u(t)\}=1+\frac{e^{-\omega_{0} \zeta t}}{2 \omega_{0} \sqrt{1-\zeta^{2}}} & {\left[\left(-\omega_{0} \zeta-\omega_{0} \sqrt{1-\zeta^{2}}\right) e^{\omega_{0} \sqrt{1-\zeta^{2}} t}\right.} \\
& \left.+\left(\omega_{0} \zeta-\omega_{0} \sqrt{1-\zeta^{2}}\right) e^{-\omega_{0} \sqrt{1-\zeta^{2}} t}\right] u(t)
\end{aligned}
$$

$$
\text { If } \zeta=1, T\{u(t)\}=\left[1-e^{-\omega_{0} t}-\omega_{0} t e^{-\omega_{0} t}\right] u(t)
$$

5. Simulation Structures for CTLTI Systems

Direct-form implementation

- The method of obtaining a block diagram from an s-domain TF will be derived using a third-order system, but its generalization to higher-order TF is quite straightforward. Consider a CTLTI system described by a TF $H(s)$:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

Let us use an intermediate function $W(s)$

$$
\begin{gathered}
H(s)=\frac{Y(s)}{W(s)} \frac{W(s)}{X(s)}=\frac{b_{2} s^{-1}+b_{1} s^{-2}+b_{0} s^{-3}}{1+a_{2} s^{-1}+a_{1} s^{-2}+a_{0} s^{-3}} \\
X(s) \longrightarrow H(s) \longrightarrow Y(s) \quad X(s) \longrightarrow H_{1}(s) \\
H_{1}(s)=\frac{W(s)}{X(s)}=\frac{1}{1+a_{2} s^{-1}+a_{1} s^{-2}+a_{0} s^{-3}}, \quad H_{2}(s)=\frac{Y(s)}{W(s)}=b_{2} s^{-1}+b_{1} s^{-2}+b_{0} s^{-3} \\
W(s)=X(s)-a_{2} s^{-1} W(s)-a_{1} s^{-2} W(s)-a_{0} s^{-3} W(s) \\
Y(s)=b_{2} s^{-1} W(s)+b_{1} s^{-2} W(s)+b_{0} s^{-3} W(s)
\end{gathered}
$$

Completed block diagram for simulating the transfer function $H(s)$

$$
x(t) \longrightarrow \int d t \longrightarrow y(t)
$$

- Example 5: Obtaining a block diagram from transfer function A CTLTI system is described through the transfer function:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{2 s^{3}-26 s+24}{s^{4}+7 s^{3}+21 s^{2}+37 s+30}
$$

Cascade and parallel forms
Cascade form

$$
H(s)=H_{1}(s) H_{2}(s) \cdots H_{M}(s)=\frac{W_{1}(s)}{X(s)} \frac{W_{2}(s)}{W_{1}(s)} \cdots \frac{Y(s)}{W_{M-1}(s)}
$$

- Example 6: Obtaining a block diagram from transfer function Develop a cascade form block diagram for simulating the system used in example 2.

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{2(s+4)(s-3)(s-1)}{(s+1-j 2)(s+1+j 2)(s+3)(s+2)}
$$

Further simplified cascade form block diagram

Parallel form $H(s)=\bar{H}_{1}(s)+\bar{H}_{2}(s)+\cdots+\bar{H}_{M}(s)=\frac{\bar{W}_{1}(s)}{X(s)}+\frac{\bar{W}_{2}(s)}{X(s)}+\cdots+\frac{\bar{W}_{M}(s)}{X(s)}$

- Example 7: Obtaining a block diagram from transfer function Develop a parallel form BD for simulating the system used in example 2.

$$
H(s)=\frac{2 s+8}{s^{2}+2 s+5}+\frac{12}{s+2}+\frac{-6}{s+3}
$$

6. Unilateral Laplace Transform

The unilateral Laplace transform of the function x is defined as:

$$
\mathcal{L}_{u}\{x(t)\}=X(s)=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t
$$

- The unilateral LT is related to the bilateral Laplace transform as follows:

$$
\mathcal{L}_{u}\{x(t)\}=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} x(t) u(t) e^{-s t} d t=\mathcal{L}\{x(t) u(t)\}
$$

- With the unilateral LT, the same inverse transform equation is used as in the bilateral case.
- The unilateral LT is only invertible for causal functions.
- For a noncausal function x, we can only recover $x(t)$ for $t \geq 0$.

Unilateral Versus Bilateral Laplace Transform

In the unilateral case:

- The time-domain convolution property has the additional requirement that the functions being convolved must be causal.
- The time/Laplace-domain scaling property has the additional constraint that the scaling factor must be positive.
- The time-domain differentiation property has an extra term in the expression of $\mathcal{L}_{u}(d x(t) / d t)$, namely $-x\left(0^{-}\right)$.
- The time-domain integration property has a different lower limit in the timedomain integral (0^{-}instead of $-\infty$);
- The time-domain shifting property does not hold (except in special cases).

Properties of the Unilateral Laplace Transform

Property	$\boldsymbol{x}(\boldsymbol{t})$	$\boldsymbol{X}(s)$	ROC
Linearity	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	$\supset\left(R_{1} \cap R_{2}\right)$
Multiply by t	$t x(t)$	$-d X(s) / d s$	R
Multiply by $e^{-\alpha t}$	$x(t) e^{-\alpha t}$	$X(s+\alpha)$	Shift R by $-\alpha$
Scaling in t	$x(a t), a>0$	$\frac{1}{a} X\left(\frac{s}{a}\right)$	$a R$
Differentiate in t	$d x(t) / d t$	$s X(s)-x\left(0^{-}\right)$	$\supset R$
Integrate in t	$\int_{0^{-}}^{t} x(\tau) d \tau$	$\frac{X(s)}{s}$	$\supset(R \cap(\operatorname{Re}(s)>0))$
Convolve in t	$x_{1} * x_{2}(t)$	$X_{1}(s) X_{2}(s)$	$\supset\left(R_{1} \cap R_{2}\right)$

Unilateral Laplace Transform Pairs

Pair	$x(t) ; t \geq 0$	$X(s)$	Pair	$x(t) ; t \geq 0$	$X(s)$
1	$\delta(t)$	1	6	$\cos \omega_{0} t$	$\frac{s}{s^{2}+\omega_{0}^{2}}$
2	1	$\frac{1}{s}$	7	$\sin \omega_{0} t$	$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$
3	t^{n}	$\frac{n!}{s^{n+1}}$	8	$e^{-a t} \cos \omega_{0} t$	$\frac{s+a}{(s+a)^{2}+\omega_{0}^{2}}$
4	$e^{-a t}$	$\frac{1}{s+a}$	9	$e^{-a t} \sin \omega_{0} t$	$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}$
5	$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$			

