CECC507: Signals and Systems

Lecture Notes II: Z-Transorm for Discrete-Time Signals and Systems: Part A

> Ramez Koudsieh, Ph.D.
> Faculty of Engineering
> Department of Mechatronics Manara University

حَــامعة
الـُمَـنارة
Chapter 8
Z-Transform for Discrete-Time Signals and Systems
1 Introduction
2 Z-Transform
3 Inverse Z-Transform
4 Using the Z-Transform with DTLTI Systems 5 Simulation Structures for DTLTI Systems 6 Unilateral Z-Transform

1. Introduction

- The z-transform (ZT) can be viewed as a generalization of the discrete time Fourier transform.
- The ZT representation exists for some sequences that do not have a discrete Fourier transform representation. So, we can handle some sequences with the ZT that cannot be handled with the DTFT ($x[n]=n u[n]$).

2. Z-Transform

- The z-transform of a discrete-time signal $x[n]$ is defined as:

$$
Z\{x[n]\}=X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

where z, the independent variable of the transform is a complex number.

- The z-transform defined is sometimes referred to as the bilateral (two sided) z transform. A simplified variant of the transform termed the unilateral (onesided) z-transform is introduced as an alternative analysis tool.

Relationship Between ZT and Discrete-Time FT

$$
\begin{gathered}
X(r, \Omega)=\left.X(z)\right|_{z=r e^{\beta^{2}}}=\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \Omega}\right)^{-n}=\sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j \Omega n}=F\left\{r^{-n} x[n]\right\} \\
\left.X(z)\right|_{z=e^{j \Omega}}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\mathcal{F}\{x[n]\}
\end{gathered}
$$

- Example 1: A simple z-transform example

$$
x[n]=\left\{\begin{array}{c}
\{3.7,1.3,-1.5,3.4,5.2\} \\
n=0 \\
n
\end{array}\right.
$$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=3.7+1.3 z^{-1}-1.5 z^{-2}+3.4 z^{-3}+5.2 z^{-4}
$$

The transform converges at all points in the complex z-plane except of $z=0$.

- Example 2: z-transform of a non-causal signal

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=3.7 z^{2}+1.3 z^{1}-1.5+3.4 z^{-1}+5.2 z^{-2}
$$

$$
\begin{aligned}
& x[n]=\{3.7,1.3,-1.5,3.4,5.2\} \\
& n=0
\end{aligned}
$$

It converges at every point in the z-plane except, the origin and infinity.

- Example 3: z-Transform of the unit-impulse

$$
X(z)=z\{\delta[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[0] z^{0}=1 .
$$

- Example 4: z-Transform of a time shifted the unit-impulse

$$
X(z)=Z\{\delta[n-k]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=z^{-k}
$$

1. If $k>0$ then the transform does not converge at the origin $z=0$.
2. If $k<0$ then the transform does not converge at infinity.

Regions of Convergence

- For the z-transform $X(z)$ of $x[n]$ to exist we need that:

$$
|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right| \leq \sum_{n=-\infty}^{\infty}|x[n]|\left|r^{-n} e^{-j \Omega n}\right|=\sum_{n=-\infty}^{\infty}|x[n]| r^{-n}<\infty
$$

Thus, the ROC depends only on r and not on Ω.

ROC of Finite-Support Signals

The region of convergence (ROC) of the z-transform of a signal $x[n]$ of finite support [N_{0}, N_{1}], where $-\infty<N_{0} \leq n \leq N_{1}<\infty$, is the whole z-plane, excluding the origin $z=0$ and/or $z= \pm \infty$ depending on N_{0} and N_{1}.

$$
X(z)=\sum_{n=N_{0}}^{N_{1}} x[n] z^{-n}
$$

ROC of Infinite-Support Signals

1. causal signal $x[n]$ has a region of convergence $|z|>r_{1}$ where r_{1} is the largest radius of the poles of $X(z)$, i.e., the ROC is the outside of a circle of radius r_{1},
2. anticausal signal $x[n]$ has as region of convergence the inside of the circle defined by the smallest radius r_{2} of the poles of $X(z)$, or $|z|<r_{2}$,
3. noncausal signal $x[n]$ has as region of convergence $r_{1}<|z|<r_{2}$, or the inside of a torus of inside radius r_{1} and outside radius r_{2} corresponding to the maximum and minimum radii of the poles of $X_{c}(z)$ and $X_{a c}(z)$, or the z-transforms of the causal and anticausal components of $x[n]=x_{c}[n]+x_{a c}[n]$.

- Example 5: z-Transform of the unit-step signal

$$
X(z)=Z\{u[n]\}=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}=\frac{z}{z-1}
$$

converge if: $\left|z^{-1}\right|<1 \Rightarrow|z|>1$

- Example 6: z-Transform of a causal exponential signal

$$
\begin{gathered}
x[n]=a^{n} u[n] \\
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{gathered}
$$

converge if: $\left|a z^{-1}\right|<1 \Rightarrow|z|>|a|$

- Example 7: z-Transform of an anti-causal exponential signal

$$
x[n]=-a^{n} u[-n-1]
$$

$$
X(z)=\sum_{n=-\infty}^{\infty}-a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n}=-\sum_{m=1}^{\infty} a^{-m} z^{m}=-\sum_{m=1}^{\infty}\left(a^{-1} z\right)^{m}
$$

$$
=-a^{-1} z \frac{1}{1-a^{-1} z}=\frac{z}{z-a} \quad \text { converge if: }\left|a^{-1} z\right|<1 \Rightarrow|z|<|a|
$$

$$
\begin{aligned}
& Z\left\{a^{n} u[n]\right\}=\frac{z}{z-a}, \quad \mathrm{ROC}:|z|>|a| \\
& Z\left\{-a^{n} u[-n-1]\right\}=\frac{z}{z-a}, \quad \mathrm{ROC}:|z|<|a|
\end{aligned}
$$

- Note: It is possible for two different signals to have the same transform expression for the z-transform $X(z)$. In order for us to uniquely identify which signal among the two led to a particular transform, the region of convergence must be specified along with the transform.
- In the general case, a rational transform $X(z)$ is expressed in the form

$$
X(z)=K \frac{B(z)}{A(z)}=K \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(p-p_{1}\right)\left(p-p_{2}\right) \cdots\left(p-p_{N}\right)}
$$

The larger of M and N is the order of the transform $X(z)$.

- Example 8: z-Transform of a discrete-time pulse signal

$$
X(z)=\sum_{n=0}^{N-1}(1) z^{-n}=\frac{1-z^{-N}}{1-z^{-1}}, \quad \mathrm{ROC}:|z|>0
$$

$X(z)=\frac{z^{N}-1}{z^{N-1}(z-1)}$ It seems as though $X(z)$ might have a pole at $z=1$
Zeros: $z_{k}=e^{j 2 \pi k / N}, \quad k=1, \cdots, N-1$
Poles: $z=1$ and $p_{k}=0, \quad k=1, \cdots, N-1$
The factors $(z-1)$ in numerator and denominator polynomials cancel each other, therefore there is neither a zero nor a pole at $z=1$.

- Example 9: z-Transform of complex exponential signal

$$
\begin{aligned}
& x[n]=e^{j \Omega_{0} n} u[n] \\
& X(z)=\sum_{n=0}^{\infty} e^{j \Omega_{0} n} z^{-n}=\sum_{n=0}^{\infty}\left(e^{j \Omega_{0}} z^{-1}\right)^{n}=\frac{1}{1-e^{j \Omega_{0}} z^{-1}} \\
& X(z)=\frac{z}{z-e^{j \Omega_{0}}} \quad \operatorname{ROC}:\left|e^{j \Omega_{0}} z^{-1}\right|<1 \Rightarrow|z|>1
\end{aligned}
$$

Properties of z-Transform

Property	$\boldsymbol{x}[\boldsymbol{n}]$	$\boldsymbol{X}(\boldsymbol{z})$	ROC
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Time shifting	$x[n-k]$	$X(z) z^{-k}$	$R \pm\{0$ or $\infty\}$
Time reversal	$x[-n]$	$X\left(z^{-1}\right)$	R^{-1}
Multiply by exp.	$x[n] a^{n}$	$X(z / a)$	$\|a\| R$
Differentiate in z	$n x[n]$	$-z d X(z) / d z$	R
Convolution	$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Summation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{z}{z-1} X(z)$	$\supset(R \cap(z>1))$

- Example 10: z-Transform of a cosine signal

$$
x[n]=\cos \left(\Omega_{0} n\right) u[n]
$$

$$
\begin{aligned}
& \cos \left(\Omega_{0} n\right) u[n]=\frac{1}{2} e^{j \Omega_{0} n} u[n]+\frac{1}{2} e^{-j \Omega_{0} n} u[n] \\
& Z\left\{\cos \left(\Omega_{0} n\right) u[n]\right\}=\frac{1}{2} Z\left\{e^{j \Omega_{0} n} u[n]\right\}+\frac{1}{2} Z\left\{e^{-j \Omega_{0} n} u[n]\right\} \\
& =\frac{1 / 2}{1-e^{j \Omega_{0}} z^{-1}}+\frac{1 / 2}{1-e^{-j \Omega_{0}} z^{-1}}=\frac{1-\cos \left(\Omega_{0}\right) z^{-1}}{1-2 \cos \left(\Omega_{0}\right) z^{-1}+z^{-2}} \\
& =\frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \cos \left(\Omega_{0}\right) z+1} \quad \operatorname{ROC} \text { is }|z|>1
\end{aligned}
$$

- Example 11: z-Transform of a sine signal

$$
x[n]=\sin \left(\Omega_{0} n\right) u[n]
$$

$$
\begin{aligned}
& \sin \left(\Omega_{0} n\right) u[n]=\frac{1}{2 j} e^{j \Omega_{0} n} u[n]-\frac{1}{2 j} e^{-j \Omega_{0} n} u[n] \\
& z\left\{\sin \left(\Omega_{0} t\right) u[n]\right\}=\frac{1}{2 j} z\left\{e^{j \Omega_{0} n} u[n]\right\}-\frac{1}{2 j} Z\left\{e^{-j \Omega_{0} n} u[n]\right\} \\
& =\frac{1 / 2 j}{1-e^{j \Omega_{0}} z^{-1}}-\frac{1 / 2 j}{1-e^{-j \Omega_{0}} z^{-1}}=\frac{\sin \left(\Omega_{0}\right) z^{-1}}{1-2 \cos \left(\Omega_{0}\right) z^{-1}+z^{-2}} \\
& =\frac{\sin \left(\Omega_{0}\right) z}{z^{2}-2 \cos \left(\Omega_{0}\right) z+1} \quad \text { ROC is }|z|>1
\end{aligned}
$$

- Example 12: Multiplication by an exponential signal

$$
\begin{aligned}
& x[n]=a^{n} \cos \left(\Omega_{0} n\right) u[n] \\
& x[n]=a^{n} x_{1}[n], \quad X_{1}(z)=\frac{z\left[1-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \cos \left(\Omega_{0}\right) z+1} \\
& X_{1}(z)=X_{1}(z / a)=\frac{z\left[z-a \cos \left(\Omega_{0}\right)\right]}{z^{2}-2 a \cos \left(\Omega_{0}\right) z+a^{2}}
\end{aligned}
$$

The transform $X(z)$ has two poles at:

$$
z=a e^{ \pm j \Omega_{0}} \Rightarrow \mathrm{ROC}:|z|>|a|
$$

- Example 13: Using the differentiation property

$$
\begin{gathered}
x[n]=n a^{n} u[n] \\
Z\left\{a^{n} u[n]\right\}=\frac{z}{z-a}, \quad \mathrm{ROC}:|z|>|a| \\
X(z)=(-z) \frac{d}{d z} \frac{z}{z-a}=\frac{a z}{(z-a)^{2}}, \quad \mathrm{ROC}:|z|>|a|
\end{gathered}
$$

z-Transform of a unit-ramp signal $x[n]=n u[n]$

$$
\text { Setting } a=1 \Rightarrow X(z)=\left.\frac{a z}{(z-a)^{2}}\right|_{a=1}=\frac{z}{(z-1)^{2}}, \quad \text { ROC: }|z|>1
$$

- Example 14: Using the convolution property

$$
x_{1}[n]=\underset{\substack{\uparrow \\ n=0}}{\left.\underset{\uparrow}{4}, 3,2,1\}, \quad x_{2}[n]=\underset{\substack{\uparrow \\ n=0}}{\{\underset{~}{3}}, 7,4\right\}}
$$

Determine $x[n]=x_{1}[n] * x_{2}[n]$ using z-transform techniques.

$$
\begin{aligned}
& X_{1}(z)=4+3 z^{-1}+2 z^{-2}+z^{-3}, \quad X_{2}(z)=3+7 z^{-1}+4 z^{-2} \\
& X(z)=X_{1}(z) X_{2}(z)=12+37 z^{-1}+43 z^{-2}+29 z^{-3}+15 z^{-4}+4 z^{-5} \\
& x[n]=\left\{\begin{array}{c}
\uparrow \\
n=0 \\
12
\end{array}, 37,43,29,15,4\right\}
\end{aligned}
$$

- Example 15: Finding the output signal of a DTLTI system using inverse z-transform

$$
h[n]=(0.9)^{n} u[n], \quad x[n]=u[n]-u[n-7]
$$

$$
\begin{aligned}
H(z) & =z\{h[n]\}=\frac{z}{z-0.9}, \quad \text { ROC }:|z|>0.9 \\
X(z) & =\sum_{n=0}^{6} z^{-n}=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}=\frac{z^{7}-1}{z^{6}(z-1)}, \quad \text { ROC: }|z|>0 \\
Y(z) & =X(z) H(z) \\
& =H(z)+z^{-1} H(z)+z^{-2} H(z)+z^{-3} H(z)+z^{-4} H(z)+z^{-5} H(z)+z^{-6} H(z) \\
y[n] & =h[n]+h[n-1]+h[n-2]+h[n-3]+h[n-4]+h[n-5]+h[n-6] \\
y[n] & =(0.9)^{n} u[n]+(0.9)^{n-1} u[n-1]+(0.9)^{n-2} u[n-2]+(0.9)^{n-3} u[n-3] \\
& +(0.9)^{n-4} u[n-4]+(0.9)^{n-5} u[n-5]+(0.9)^{n-6} h[n-6]
\end{aligned}
$$

Initial and final value Theorems

Initial and final value properties of the z-transform applies to causal signals only.
Initial value: $x[0]=\lim _{z \rightarrow \infty} X(z)$
Final value: $\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) X(z)$

- Example 16: Using the initial value property

$$
X(z)=\frac{3 z^{3}+2 z+5}{2 z^{3}-7 z^{2}+z-4}
$$

Determine the initial value $x[0]$ of the signal.

$$
x[0]=\lim _{z \rightarrow \infty} \frac{3 z^{3}+2 z+5}{2 z^{3}-7 z^{2}+z-4}=\frac{3}{2}
$$

3. Inverse Z-Transform

- Recall that the inverse z-transform x of X is given by:

$$
x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
$$

where Γ is a counterclockwise closed circular contour centered at the origin and with radius r such that Γ is in the ROC of X.

- Unfortunately, the above contour integration can often be quite tedious to compute. Consequently, we do not usually compute the inverse z-transform directly using the above equation.
- For rational functions, the inverse z-transform can be more easily computed using partial fraction expansions.
- Example 17: Finding the inverse z-transform using partial fractions

$$
\begin{aligned}
& X(z)=\frac{(z-1)(z+2)}{(z-1 / 2)(z-2)} \\
& \frac{X(z)}{z}=\frac{(z-1)(z+2)}{z(z-1 / 2)(z-2)}=\frac{-2}{z}+\frac{\frac{5}{3}}{\left(z-\frac{1}{2}\right)}+\frac{\frac{4}{3}}{(z-2)} \text { Unit circle } \\
& X(z)=-2+\frac{\frac{5}{3} z}{\left(z-\frac{1}{2}\right)}+\frac{\frac{4}{3} z}{(z-2)}=X_{1}(z)+X_{2}(z)+X_{3}(z)
\end{aligned}
$$

$X_{1}(z)$, is a constant, and its ROC is the entire z-plane. $x_{1}[n]=Z^{-1}\{-2\}=-2 \delta[n]$ The ROC of $X(z)$ will be determined based on the individual ROCs of the terms $X_{2}(z)$ and $X_{3}(z)$. Three possibilities:

Possibility 1: ROC: $|z|<1 / 2$
$X_{2}(z)$ and $X_{3}(z)$ must correspond to anti-causal signals. We need: ROC for $X_{2}(z):|z|<1 / 2$ ROC for $X_{3}(z):|z|<2$

$$
\begin{aligned}
& x_{2}[n]=-\frac{5}{3}\left(\frac{1}{2}\right)^{n} u[-n-1] \\
& x_{3}[n]=-\frac{4}{3}(2)^{n} u[-n-1]
\end{aligned}
$$

$$
x[n]=-2 \delta[n]-\left[\frac{5}{3}\left(\frac{1}{2}\right)^{n}+\frac{4}{3}(2)^{n}\right] u[-n-1]
$$

$$
x[n]=\{\cdots,-53.375,-26.75,-13.5,-7,-4,-\underset{\uparrow}{-2}\}
$$

Possibility 2: ROC: $|z|>2$
$X_{2}(z)$ and $X_{3}(z)$ must correspond to causal signals. We need:
ROC for $X_{2}(z):|z|>1 / 2$
ROC for $X_{3}(z):|z|>2$

$$
\begin{gathered}
x_{2}[n]=\frac{5}{3}\left(\frac{1}{2}\right)^{n} u[n] \\
x_{3}[n]=\frac{4}{3}(2)^{n} u[n] \\
x[n]=-2 \delta[n]+\left[\frac{5}{3}\left(\frac{1}{2}\right)^{n}+\frac{4}{3}(2)^{n}\right] u[n] \\
x[n]=\left\{\begin{array}{c}
\substack{\uparrow=0} \\
n
\end{array}, 3.5,5.75,8.208,13.385, \cdots\right\}
\end{gathered}
$$

جَــامعة
الـَــنارة

Possibility 3: ROC: $1 / 2<|z|<2$
$X_{2}(z)$ and $X_{3}(z)$ must correspond to noncausal signals. We need:
ROC for $X_{2}(z):|z|>1 / 2$
ROC for $X_{3}(z):|z|<2$

$$
\begin{aligned}
& x_{2}[n]=\frac{5}{3}\left(\frac{1}{2}\right)^{n} u[n] \\
& x_{3}[n]=-\frac{4}{3}(2)^{n} u[-n-1]
\end{aligned}
$$

$x[n]=-2 \delta[n]+\frac{5}{3}\left(\frac{1}{2}\right)^{n} u[n]-\frac{4}{3}(2)^{n} u[-n-1]$
$x[n]=\{\cdots,-0.333,-0.667,-0.333,0.833,0.417, \cdots\}$

