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1. Introduction

▪ The z-transform (ZT) can be viewed as a generalization of the discrete time 

Fourier transform.

▪ The ZT representation exists for some sequences that  do not have a discrete 

Fourier transform representation. So, we can handle some sequences with the 

ZT that cannot be handled with the DTFT (x[n] = nu[n]).

2. Z-Transform
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▪ The z-transform of a discrete-time signal x[n] is defined as:

where z, the independent variable of the transform is a complex number.
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▪ The z-transform defined is sometimes referred to as the bilateral (two sided) z-

transform. A simplified variant of the transform termed the unilateral (one-

sided) z-transform is introduced as an alternative analysis tool.

Relationship Between ZT and Discrete-Time FT
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▪ Example 1: A simple z-transform example
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▪ Example 2: z-transform of a non-causal signal
[ ] {3.7, . , 1.5 , 3.4, 5.2}
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It converges at every point in the z-plane except, the origin and infinity.

▪ Example 3: z-Transform of the unit-impulse
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It converges at every point in the z-plane
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The transform converges at all points in the complex z-plane except of z = 0.
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▪ Example 4: z-Transform of a time shifted the unit-impulse
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1. If k > 0 then the transform does not converge at the origin z = 0.

2. If k < 0 then the transform does not converge at infinity.

Regions of Convergence

▪ For the z-transform X(z) of x[n] to exist we need that:
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Thus, the ROC depends only on r and not on Ω.
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ROC of Finite-Support Signals

The region of convergence (ROC) of the z-transform of a signal x[n] of finite 

support [N0, N1], where −∞ < N0 ≤ n ≤ N1 < ∞, is the whole z-plane, excluding the 

origin z = 0 and/or z = ±∞ depending on N0 and N1.

( ) [ ] −
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= 
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n N

X z x n z
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0

ROC of Infinite-Support Signals

1. causal signal x[n] has a region of convergence |z| > r1 where r1 is the largest 

radius of the poles of X(z), i.e., the ROC is the outside of a circle of radius r1,

2. anticausal signal x[n] has as region of convergence the inside of the circle 

defined by the smallest radius r2 of the poles of X(z), or |z| < r2,
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3. noncausal signal x[n] has as region of convergence r1 < |z| < r2, or the inside 

of a torus of inside radius r1 and outside radius r2 corresponding to the 

maximum and minimum radii of the poles of Xc(z) and Xac(z), or the 

z-transforms of the causal and anticausal components of x[n] = xc[n] + xac[n].
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▪ Example 5: z-Transform of the unit-step signal
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converge if: |z−1| < 1 ⇒ |z| > 1

https://manara.edu.sy/


https://manara.edu.sy/Z-Transform for Discrete-Time Signals and Systems 10/302023-2024

▪ Example 6: z-Transform of a causal exponential signal
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converge if: |az−1| < 1 ⇒ |z| > |a|

x[n] = an u[n]
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▪ Example 7: z-Transform of an anti-causal exponential signal
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converge if: |a−1z| < 1 ⇒ |z| < |a|

x[n] = −an u[−n − 1]
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▪ Note: It is possible for two different signals to have the same transform 

expression for the z-transform X(z). In order for us to uniquely identify which 

signal among the two led to a particular transform, the region of convergence 

must be specified along with the transform.

▪ In the general case, a rational transform X(z) is expressed in the form
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The larger of M and N is the order of the transform X(z).
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▪ Example 8: z-Transform of a discrete-time pulse signal
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It seems as though X(z) might have a pole at z = 1

Zeros: / , , , = = −j k N
kz e k N2 1 1

Poles: z = 1 and , , , = = −kp k N0 1 1

The factors (z − 1) in numerator and denominator polynomials cancel each 

other, therefore there is neither a zero nor a pole at z = 1.
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▪ Example 9: z-Transform of complex exponential signal
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Properties of z-Transform

Property x[n] X(z) ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊃ (R1 ∩ R2)

Time shifting x[n − k] X(z)z−k R ± {0 or ∞}

Time reversal x[−n] X(z−1) R−1

Multiply by exp. x[n]an X(z/a) |a|R

Differentiate in z nx[n] −z dX(z)/dz R

Convolution x1[n] *x2[n] X1(z) X2(z) ⊃ (R1 ∩ R2)

Summation ⊃ (R ∩ (z > 1))[ ]
=−


n

k

x k ( )
−

z
X z
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ROC is |z| > 1
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▪ Example 10: z-Transform of a cosine signal
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▪ Example 11: z-Transform of a sine signal

[ ] sin( ) [ ]= x n n u n0

ROC is |z| > 1
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[ ] cos( ) [ ]= nx n a n u n0

▪ Example 12: Multiplication by an exponential signal
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The transform X(z) has two poles at:

ROC: 
 

=  >
jz ae z a0
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▪ Example 13: Using the differentiation property

x[n] = nan u[n]

{ [ ]} , ROC: n z
a u n z a
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X z z z a

dz z a z a 2

z-Transform of a unit-ramp signal x[n] = nu[n]

Setting a = 1 ⇒ ( ) , ROC: 
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▪ Example 14: Using the convolution property

[ ] { 4 , , , 1}, [ ] { 3 , , }
 
= =

= =

n n

x n x n1 2

0 0

3 2 7 4

Determine x[n] = x1[n] * x2[n] using z-transform techniques.

( ) 2 , ( ) 4− − − − −= + + + = + +X z z z z X z z z1 2 3 1 2
1 24 3 3 7

( ) ( ) ( ) 43 4− − − − −= = + + + + +X z X z X z z z z z z1 2 3 4 5
1 2 12 37 29 15

[ ] { 12 , , , 29, , 4}

=

=

n

x n
0

37 43 15

▪ Example 15: Finding the output signal of a DTLTI system using inverse 

z-transform
h[n] = (0.9)n u[n], x[n] = u[n] − u[n − 7]
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Initial and final value Theorems

Initial and final value properties of the z-transform applies to causal signals only.

[0] lim ( )
→

=
z

x X z

▪ Example 16: Using the initial value property

Determine the initial value x[0] of the signal.
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+ +
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X z

z z z
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2 7 4
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Initial value:

lim [ ] lim ( ) ( )
n z
x n z X z

→ →
= −

1
1Final value:
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3. Inverse Z-Transform

▪ Recall that the inverse z-transform x of X is given by:

 where G is a counterclockwise closed circular contour centered at the origin 

and with radius r such that G is in the ROC of X.

▪ Unfortunately, the above contour integration can often be quite tedious to 

compute. Consequently, we do not usually compute the inverse z-transform 

directly using the above equation.

▪ For rational functions, the inverse z-transform can be more easily computed 

using partial fraction expansions.

[ ] ( ) 11

2
nx n X z z dz

j

−= 
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▪ Example 17: Finding the inverse z-transform using partial fractions

( )( )
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1 2 2

( ) ( )( )

( / )( ) ( ) ( )

X z z z

z z z z z z z

− + −
= = + +

− − − −

5 4
3 3
1
2

1 2 2

1 2 2 2

X1(z), is a constant, and its ROC is the entire z-plane. [ ] { } [ ]x n n−= − = −1
1 2 2Z

The ROC of X(z) will be determined based on the individual ROCs of the 

terms X2(z) and X3(z). Three possibilities:
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1 2 31
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Possibility 1: ROC: |z| < ½

X2(z) and X3(z) must correspond 

to anti-causal signals. We need:

ROC for X2(z): |z| < ½

ROC for X3(z): |z| < 2

( )[ ] [ ]= − − −
n

x n u n5 1
2 3 2 1

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ]  = − − + − −
  

n n
x n n u n5 1 4

3 2 32 2 1

[ ] { , , , , , , 2 }

=

= − − − − − −. . .
n

x n
0

53 375 26 75 13 5 7 4
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Possibility 2: ROC: |z| > 2

X2(z) and X3(z) must correspond 

to causal signals. We need:

ROC for X2(z): |z| > ½

ROC for X3(z): |z| > 2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]=
n

x n u n4
3 3 2

( ) ( )[ ] [ ] [ ]  = − + +
  

n n
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3 2 32 2
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
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= . . . .
n

x n
0

1 3 5 5 75 8 208 13 385
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Possibility 3: ROC: ½ < |z| < 2

X2(z) and X3(z) must correspond 

to noncausal signals. We need:

ROC for X2(z): |z| > ½

ROC for X3(z): |z| < 2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ] [ ]= − + − − −
n n
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[ ] { , , , , , , }

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= − − −. . . . .
n

x n
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0 333 0 667 0 333 0 833 0 417
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