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Transfer Function and LTI Systems
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▪ Since y[n] = x[n] * h[n], the system is characterized in the Laplace domain by 

Y(z) = X(z)H(z).

▪ H(z) is the transfer function (or system function) of the system (i.e., the 

transfer function is the LT of the impulse response).

▪ A LTI system is completely characterized by its transfer function H.

Block Diagram Representation

4. Using the z-Transform with DTLTI Systems
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Relating the transfer function to the difference equation

▪ Many DTLTI systems of practical interest can be represented using an Nth-

order linear difference equation with constant coefficients.

▪ Consider a system with input x and output y that is characterized by an 

equation of the form:
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▪ The impulse response of the system h[n] = Z−1{H(z)}.
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▪ The convolution operation is only applicable to problems involving LTI 

systems. 

▪ Therefore it follows that the transfer function concept is meaningful only for 

systems that are both linear and time invariant.

▪ In determining the transfer function from the difference equation, all initial 

conditions must be assumed to be zero.
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▪ Example 1: Finding the transfer function from the DE

A DTLTI system is defined by means of the difference equation:
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Transfer function and causality

▪ For a DTLTI system to be causal, its impulse response h[n] needs to be equal 

to zero for n < 0.

( ) [ ] [ ]n n

k k

H z h n z h n z
 

− −

=− =

= = 
0

https://manara.edu.sy/


https://manara.edu.sy/Z-Transform for Discrete-Time Signals and Systems 7/202023-2024

▪ The ROC for the transfer function of a causal system is the outside of a circle 

in the z-plane. Consequently, the transfer function must also converge at 

|z| → ∞. Consider a transfer function in the form:
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For the system described by H(z) to be causal we need:
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▪ Note: this condition is necessary for a system to be causal, but it is not 

sufficient. It is also possible for a non-causal system to have a system 

function with M ≤ N.
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▪ Fourier transform of a signal exists if the signal is absolute integrable.
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Stability condition:

▪ For a DTLTI system to be stable, the ROC of its z-domain transfer function 

must include the unit circle.

▪ For a causal system to be stable, the transfer function must not have any 

poles on or outside the unit circle of the z-plane.

Transfer function and stability:

▪ For a DTLTI system to be stable its impulse response must be absolute 

integrable.
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▪ For a anticausal system to be stable, the transfer function must not have any 

poles on or inside the unit circle of the z-plane.

▪ For a noncausal system the ROC for the TF, if it exists, is the region between 

two circles with radii r1 and r2, r1 < |z| < r2. The poles of the TF may be either:

a. On or inside the circle with radius r1

b. On or outside the circle with radius r2

and the ROC must include the unit circle.

▪ Example 19: Impulse response of a stable system

Determine the impulse response of a stable system characterized by:
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The poles of the system are at p = −1.2, 0.8, 2. Since the system is known to 

be stable, its ROC must include the unit circle. The only possible choice is 

0.8 < |z| < 1.2.
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5. Simulation Structures for DTLTI Systems

Direct-form implementation

▪ The general form of the z-domain transfer function for a DTLTI system is:
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▪ The method of obtaining a block diagram from an z-domain TF will be derived 

using a third-order system, but its generalization to higher-order TF is quite 

straightforward. Consider a DTLTI system described by a TF H(z):
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Let us use an intermediate function V(z)
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Direct-form I realization of H(z)

Direct-form I realization of H(z) using 
time-domain quantities
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Since each subsystem, H1(z) and H2(z), is linear, it does not matter which one 

comes first in a cascade connection.

Direct-form II realization of H(z)
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Cascade and parallel forms
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6. Unilateral z-Transform

The unilateral z-transform of the signal x is defined as:
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▪ The unilateral ZT is related to the bilateral z-transform as follows:
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▪ If x[n] is a causal signal, then the unilateral transform Xu(z) becomes identical 

to the bilateral transform X(z).

▪ One property of the unilateral z-transform that differs from its counterpart for 

the bilateral z-transform is the time-shifting property.
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▪ The unilateral z-transform is useful in the use of z-transform techniques for 

solving difference equations with specified initial conditions.
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▪ Example 3: Finding the natural response of a system through z-transform

Using z-transform techniques, determine the natural response of the system 

for the initial conditions: y[−1] = 19, y[−2] = 53.
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▪ Example 4: Finding the forced response of a system through z-transform

Consider a system defined by means of the difference equation:

y[n] = 0.9y[n − 1] + 0.1x[n]

Determine the response of this system for the input signal x[n] = 20 cos(0.2pn)

if the initial value of the output is y[−1] = 2.5.
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The forced response of the system is:

y[n] = 2.7129 (0.9)n u[n] + 1.5371cos(0.2pn)u[n] + 2.9907sin(0.2pn)u[n]
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