CECC507: Signals and Systems

Lecture Notes 12: I-Transorm for Discrete-Time Signals and Systems: Part B

> Ramez Koudsieh, Ph.D.
> Faculty of Engineering
> Department of Mechatronics Manara University

Chapter 8

Z-Transform for Discrete-Time Signals and Systems

1 Introduction
2 Z-Transform
3 Inverse 7-Transform
4 Using the Z-Transform with DTLTI Systems
5 Simulation Structures for DTLTI Systems
6 Unilateral Z-Transform
4. Using the z-Transform with DTLTI Systems

Transfer Function and LTI Systems

Block Diagram Representation

- Since $y[n]=x[n] * h[n]$, the system is characterized in the Laplace domain by $Y(z)=X(z) H(z)$.
- $H(z)$ is the transfer function (or system function) of the system (i.e., the transfer function is the LT of the impulse response).
- A LTI system is completely characterized by its transfer function H.

Relating the transfer function to the difference equation

- Many DTLTI systems of practical interest can be represented using an N thorder linear difference equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

where the a_{k} and b_{k} are complex constants and

$$
\begin{aligned}
Z\left\{\sum_{k=0}^{N} a_{k} y[n-k]\right\}= & Z\left\{\sum_{k=0}^{M} b_{k} x[n-k]\right\} \Rightarrow \sum_{k=0}^{N} Z\left\{a_{k} y[n-k]\right\}=\sum_{k=0}^{M} Z\left\{b_{k} x[n-k]\right\} \\
& \sum_{k=0}^{N} a_{k} Z\{y[n-k]\}=
\end{aligned}
$$

$$
\sum_{k=0}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \Rightarrow H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

- The impulse response of the system $h[n]=z^{-1}\{H(z)\}$.
- The convolution operation is only applicable to problems involving LTI systems.
- Therefore it follows that the transfer function concept is meaningful only for systems that are both linear and time invariant.
- In determining the transfer function from the difference equation, all initial conditions must be assumed to be zero.
- Example 1: Finding the transfer function from the DE A DTLTI system is defined by means of the difference equation:

$$
\begin{gathered}
y[n]-0.4 y[n-1]+0.89 y[n-2]=x[n]-x[n-1] \\
Y(z)-0.4 z^{-1} Y(z)+0.89 z^{-2} Y(z)=X(z)-s^{-1} X(s) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{1-z^{-1}}{1-0.4 z^{-1}+0.89 z^{-2}}=\frac{z(z-1)}{z^{2}-0.4 z+0.89}
\end{gathered}
$$

Transfer function and causality

- For a DTLTI system to be causal, its impulse response $h[n]$ needs to be equal to zero for $n<0$.

$$
H(z)=\sum_{k=-\infty}^{\infty} h[n] z^{-n}=\sum_{k=0}^{\infty} h[n] z^{-n}
$$

- The ROC for the transfer function of a causal system is the outside of a circle in the z-plane. Consequently, the transfer function must also converge at $|z| \rightarrow \infty$. Consider a transfer function in the form:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{b_{M} z^{M}+b_{M-1} z^{M-1}+\cdots+b_{1} z+b_{0}}{a_{N} z^{N}+a_{N-1} z^{N-1}+\cdots+a_{1} z+a_{0}}
$$

For the system described by $H(z)$ to be causal we need:

$$
\lim _{z \rightarrow \infty} H(z)=\lim _{z \rightarrow \infty} \frac{b_{M}}{a_{N}} z^{M-N}<\infty \Leftrightarrow M-N \leq 0 \Rightarrow M \leq N
$$

- Note: this condition is necessary for a system to be causal, but it is not sufficient. It is also possible for a non-causal system to have a system function with $M \leq N$.

Transfer function and stability:

- For a DTLTI system to be stable its impulse response must be absolute integrable.

$$
\sum_{k=-\infty}^{\infty}|h[n]| z^{-n}<\infty
$$

- Fourier transform of a signal exists if the signal is absolute integrable.

Stability condition:

$$
H(\Omega)=\left.H(z)\right|_{z=e^{\Omega \Omega}}
$$

- For a DTLTI system to be stable, the ROC of its z-domain transfer function must include the unit circle.
- For a causal system to be stable, the transfer function must not have any poles on or outside the unit circle of the z-plane.
- For a anticausal system to be stable, the transfer function must not have any poles on or inside the unit circle of the z-plane.
- For a noncausal system the ROC for the TF, if it exists, is the region between two circles with radii r_{1} and $r_{2}, r_{1}<|z|<r_{2}$. The poles of the TF may be either:
a. On or inside the circle with radius r_{1}
b. On or outside the circle with radius r_{2}
and the ROC must include the unit circle.
- Example 19: Impulse response of a stable system Determine the impulse response of a stable system characterized by:

$$
H(z)=\frac{z(z+1)}{(z-0.8)(z+1.2)(z-2)}
$$

The poles of the system are at $p=-1.2,0.8,2$. Since the system is known to be stable, its ROC must include the unit circle. The only possible choice is $0.8<|z|<1.2$.

$$
H(z)=\frac{z(z+1)}{(z-0.8)(z+1.2)(z-2)}=-\frac{0.75 z}{z-0.8}-\frac{0.0312 z}{z+1.2}+\frac{0.7813 z}{z-2}
$$

$$
h[n]=-0.75(0.8)^{n} u[n]+0.0312(-1.2)^{n} u[-n-1]-0.7813(2)^{n} u[-n-1]
$$

5. Simulation Structures for DTLTI Systems

Direct-form implementation

- The general form of the z-domain transfer function for a DTLTI system is:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{b_{0} z^{M}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{N} z^{-N}}
$$

- The method of obtaining a block diagram from an z-domain TF will be derived using a third-order system, but its generalization to higher-order TF is quite straightforward. Consider a DTLTI system described by a TF $H(z)$:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}}{1+a_{1} z^{-1}+a_{2} z^{-2}+a_{3} z^{-3}}
$$

Let us use an intermediate function $V(z)$

$$
\begin{gathered}
H(z)=H_{1}(z) H_{2}(z)=\frac{Y(z)}{V(z)} \frac{V(z)}{X(z)} \\
H_{1}(z)=\frac{V(z)}{X(z)}=b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}, \quad H_{2}(z)=\frac{Y(z)}{V(z)}=\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}+a_{3} z^{-3}} \\
X(z) \longrightarrow Y(z) \longrightarrow H_{1} \longrightarrow H_{2}(z) \\
V(z)=b_{0} X(z)+b_{1} z^{-1} X(z)+b_{2} z^{-2} X(z)+b_{3} z^{-3} X(z) \\
v[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]+b_{3} x[n-3] \\
Y(z)=V(z)-a_{1} z^{-1} Y(z)-a_{2} z^{-2} Y(z)-a_{3} z^{-3} Y(z) \\
y[n]=v[n]-a_{1} y[n-1]-a_{2} y[n-2]-a_{3} y[n-3]
\end{gathered}
$$

Direct-form I realization of $H(z)$ using time-domain quantities

Since each subsystem, $H_{1}(z)$ and $H_{2}(z)$, is linear, it does not matter which one comes first in a cascade connection.

Direct-form II realization of $H(z)$

Cascade and parallel forms

Cascade form

$$
\begin{aligned}
& H(z)=H_{1}(z) H_{2}(z) \cdots H_{M}(z)=\frac{W_{1}(z)}{X(z)} \frac{W_{2}(z)}{W_{1}(z)} \cdots \frac{Y(z)}{W_{M-1}(z)} \\
& X(z) \longrightarrow H_{1}(z) \\
& H_{2}(z) \\
&
\end{aligned}
$$

Parallel form

$$
\begin{aligned}
H(z) & =\bar{H}_{1}(z)+\bar{H}_{2}(z)+\cdots+\bar{H}_{M}(z) \\
& =\frac{\bar{W}_{1}(z)}{X(z)}+\frac{\bar{W}_{2}(z)}{X(z)}+\cdots+\frac{\bar{W}_{M}(z)}{X(z)}
\end{aligned}
$$

6. Unilateral z-Transform

The unilateral z-transform of the signal x is defined as:

$$
X_{u}(z)=Z_{u}\{x[n]\}=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

- If $x[n]$ is a causal signal, then the unilateral transform $X_{u}(z)$ becomes identical to the bilateral transform $X(z)$.
- The unilateral ZT is related to the bilateral z-transform as follows:

$$
Z_{u}\{x[n]\}=Z\{x[n] u[n]\}=\sum_{n=-\infty}^{\infty} x[n] u[n] z^{-n}
$$

- One property of the unilateral z-transform that differs from its counterpart for the bilateral z-transform is the time-shifting property.

$$
\begin{aligned}
& Z\{x[n-1]\}=z^{-1} Z\{x[n]\}=z^{-1} X(z) \\
& Z_{u}\{x[n-1]\}=\sum_{n=0}^{\infty} x[n-1] z^{-n}=x[-1]+\sum_{n=1}^{\infty} x[n-1] z^{-n}=x[-1]+z^{-1} \sum_{n=0}^{\infty} x[n] z^{-n} \\
& Z_{u}\{x[n-1]\}=x[-1]+z^{-1} X_{u}(z) \\
& Z_{u}\{x[n-k]\}=\sum_{n=-k}^{-1} x[n] z^{-n-k}+z^{-k} X_{u}(z), \quad k>0 \\
& Z_{u}\{x[n+k]\}=z^{-k} X_{u}(z)-\sum_{n=0}^{k-1} x[n] z^{k-n}, \quad k>0
\end{aligned}
$$

- The unilateral z-transform is useful in the use of z-transform techniques for solving difference equations with specified initial conditions.
- Example 3: Finding the natural response of a system through z-transform

$$
y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=0
$$

Using z-transform techniques, determine the natural response of the system for the initial conditions: $y[-1]=19, y[-2]=53$.

$$
\begin{aligned}
& Z_{u}\{y[n-1]\}=y[-1]+z^{-1} Y_{u}(z)=19+z^{-1} Y_{u}(z) \\
& Z_{u}\{y[n-2]\}=y[-1]+y[-2] z^{-1}+z^{-2} Y_{u}(z)=53+19 z^{-1}+z^{-2} Y_{u}(z) \\
& Y_{u}(z)-\frac{5}{6}\left[19+z^{-1} Y_{u}(z)\right]+\frac{1}{6}\left[53+19 z^{-1}+z^{-2} Y_{u}(z)\right]=0 \\
& Y_{u}(z)=\frac{z\left(7 z-\frac{19}{6}\right)}{z^{2}-\frac{5}{6} z+\frac{1}{6}}=\frac{z\left(7 z-\frac{19}{6}\right)}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}=\frac{2 z}{z-\frac{1}{2}}+\frac{5 z}{z-\frac{1}{3}} \\
& y_{h}[n]=2\left(\frac{1}{2}\right)^{n} u[n]+5\left(\frac{1}{3}\right)^{n} u[n]
\end{aligned}
$$

- Example 4: Finding the forced response of a system through z-transform Consider a system defined by means of the difference equation:

$$
y[n]=0.9 y[n-1]+0.1 x[n]
$$

Determine the response of this system for the input signal $x[n]=20 \cos (0.2 \pi n)$ if the initial value of the output is $y[-1]=2.5$.

$$
\begin{aligned}
& z\left\{\cos \left(\Omega_{0} n\right) u[n]\right\}=\frac{z\left[z-\cos \left(\Omega_{0}\right)\right]}{z^{2}-2 \cos \left(\Omega_{0}\right) z+1} \Rightarrow z_{u}\{20 \cos (0.2 \pi n)\}=\frac{20 z[z-\cos (0.2 \pi)]}{z^{2}-2 \cos (0.2 \pi) z+1} \\
& z_{u}\{y[n-1]\}=y[-1]+z^{-1} Y_{u}(z)=2.5+z^{-1} Y_{u}(z) \\
& z_{u}\{y[n]\}=0.9 z_{u}\{y[n-1]\}+0.1 z_{u}\{x[n]\} \\
& Y_{u}(z)=0.9\left[2.5+z^{-1} Y_{u}(z)\right]+0.1 \frac{20 z[z-\cos (0.2 \pi)]}{z^{2}-2 \cos (0.2 \pi) z+1}
\end{aligned}
$$

$Y_{u}(z)=0.9 z^{-1} Y_{u}(z)+2.25+\frac{2 z[z-\cos (0.2 \pi)]}{z^{2}-2 \cos (0.2 \pi) z+1}$
$Y_{u}(z)=\frac{2 z^{2}[z-\cos (0.2 \pi)]+2.25\left(z-e^{j 0.2 \pi}\right)\left(z-e^{-j 0.2 \pi}\right)}{(z-0.9)\left(z-e^{j 0.2 \pi}\right)\left(z-e^{-j 0.2 \pi}\right)}$
$Y_{u}(z)=\frac{2.7129}{z-0.9}+\frac{0.7685-j 1.4953}{z-e^{j 0.2 \pi}}+\frac{0.7685+j 1.4953}{z-e^{-j 0.2 \pi}}$
The forced response of the system is:

$$
y[n]=2.7129(0.9)^{n} u[n]+1.5371 \cos (0.2 \pi n) u[n]+2.9907 \sin (0.2 \pi n) u[n]
$$

