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Controllability and Observability

In fact, the conditions of controllability and
observability may govern the existence of a complete
solution to the control system design problem. The
solution to this problem may not exist if the system
considered is not controllable. Although most
physical systems are controllable and observable,
corresponding mathematical models may not
possess the property of controllability and
observability. Then it is necessary to know the
conditions under which a system is controllable and
observable. This section deals with controllability
and the next section discusses observability.



Controllability and Observability

A system is said to be controllable at time 𝑡0 if it is
possible by means of an unconstrained control
vector to transfer the system from any initial state
𝑿(𝒕𝟎)to any other state in a finite interval of time.

A system is said to be observable at time 𝑡0 if, with
the system in state 𝑿(𝒕𝟎), it is possible to determine
this state from the observation of the output over a
finite time interval.

The concepts of controllability and observability
were introduced by Kalman. They play an important
role in the design of control systems in state space.



Controllability and Observability

In fact, the conditions of controllability and observability may govern
the existence of a complete solution to the control system design
problem. The solution to this problem may not exist if the system
considered is not controllable. Although most physical systems are
controllable and observable, corresponding mathematical models may
not possess the property of controllability and observability. Then it is
necessary to know the conditions under which a system is controllable
and observable.

Then we derive alternative forms of the condition for complete state
controllability followed by discussions of complete output
controllability. Finally, we present the concept of stabilizability.



Complete State Controllability of Continuous-Time 
Systems

Consider the continuous-time system.

The system described by Equation is said to be state controllable at 𝒕
= 𝒕𝟎 if it is possible to construct an unconstrained control signal that
will transfer an initial state to any final state in a finite time interval 𝒕𝟎
≤ 𝒕 ≤ 𝒕𝟏 If every state is controllable, then the system is said to be
completely state controllable.



Complete State Controllability of Continuous-Time 
Systems

We shall now derive the condition for complete state controllability. 
Without loss of generality, we can assume that the final state is the 
origin of the state space and that the initial time is zero, or 𝒕𝟎 = 𝟎.

The solution of Equation is

Applying the definition of complete state controllability just given, we 
have



Complete State Controllability of Continuous-Time 
Systems

Referring to Equation

𝒆−𝑨𝒕 can be written

Substituting gives

Let us put



Complete State Controllability of Continuous-Time 
Systems

Then Equation becomes

If the system is completely state controllable, then, given any initial 
state 𝑿(𝟎), Equation must be satisfied. This requires that the rank of 
the nxn matrix

be n.



Complete State Controllability of Continuous-Time 
Systems

From this analysis, we can state the condition for complete state
controllability as follows: The system given by Equation ( ) is
completely state controllable if and only if the vectors
𝑩,𝑨𝑩,… , 𝑨𝒏−𝟏𝑩 are linearly independent, or the nxn matrix

is of rank n.

The result just obtained can be extended to the case where the
control vector u is r-dimensional. If the system is described by

where u is an r-vector, then it can be proved that the condition for
complete state controllability is that the nxnr matrix

be of rank n, or contain n linearly independent column vectors.



Complete State Controllability of Continuous-Time 
Systems

The matrix

is commonly called the controllability matrix.



EXAMPLE

Consider the system given by

the system is not completely state controllable.



EXAMPLE

Consider the system given by

The system is therefore completely state controllable.



Alternative Form of the Condition for Complete State 
Controllability

Consider the system defined by

If the eigenvectors of A are distinct, then it is possible to
find a transformation matrix P such that



Alternative Form of the Condition for Complete State 
Controllability

Note that if the eigenvalues of A are distinct, then the
eigenvectors of A are distinct; however, the converse is
not true. For example, an nxn real symmetric matrix
having multiple eigenvalues has n distinct eigenvectors.
Note also that each column of the P matrix is an
eigenvector of A associated with 𝛌𝑖(𝑖 = 1,2, … , 𝑛).



Alternative Form of the Condition for Complete State 
Controllability

Let us define                          Substituting  we obtain

we can rewrite 

Equation as



Alternative Form of the Condition for Complete State 
Controllability

If the elements of any one row of the nxr matrix F are all
zero, then the corresponding state variable cannot be
controlled by any of the 𝒖𝒊. Hence, the condition of
complete state controllability is that if the eigenvectors of
A are distinct, then the system is completely state
controllable if and only if no row of 𝑷−𝟏𝑩 has all zero
elements. It is important to note that, to apply this
condition for complete state controllability, we must put
the matrix 𝑷−𝟏𝑨𝑷 in Equation ( ) in
diagonal form.



Alternative Form of the Condition for Complete State 
Controllability

If the A matrix in Equation ( ) does not
possess distinct eigenvectors, then diagonalization is
impossible. In such a case, we may transform A into a
Jordan canonical form. If, for example, A has eigenvalues
𝛌1, 𝛌1, 𝛌1, 𝛌4, 𝛌4, 𝛌6, …… , 𝛌𝑛 , and has n-3 distinct
eigenvectors, then the Jordan canonical form of A is



Alternative Form of the Condition for Complete State 
Controllability

The square submatrices on the main diagonal are called
Jordan blocks. Suppose that we can find a transformation
matrix S such that

If we define a new state vector z by

then substitution yields

The condition for complete state controllability of the system 
of Equation (                        ) may then be stated as follows: 
The system is completely state controllable if and only if (1)



Alternative Form of the Condition for Complete State 
Controllability

(1) no two Jordan blocks in J of last Equation are
associated with the same eigenvalues,

(2) the elements of any row of 𝑺−𝟏𝑩 that correspond to
the last row of each Jordan block are not all zero, and

(3) the elements of each row of 𝑺−𝟏𝑩 that correspond to
distinct eigenvalues are not all zero.



EXAMPLE

The following systems are completely state controllable:



EXAMPLE

The following systems are not completely state controllable:



Condition for Complete State Controllability in the s 
Plane

The condition for complete state controllability can
be stated in terms of transfer functions or transfer
matrices. It can be proved that a necessary and
sufficient condition for complete state controllability
is that no cancellation occur in the transfer function
or transfer matrix. If cancellation occurs, the system
cannot be controlled in the direction of the canceled
mode.



EXAMPLE

Consider the following transfer function:

Clearly, cancellation of the factor (s+2.5) occurs in
the numerator and denominator of this transfer
function. (Thus one degree of freedom is lost.)
Because of this cancellation, this system is not
completely state controllable.



EXAMPLE

The same conclusion can be obtained by writing this
transfer function in the form of a state equation. A
state-space representation is

the rank of the matrix
Therefore, we arrive at the same conclusion: The
system is not completely state controllable.



Output Controllability

In the practical design of a control system, we may
want to control the output rather than the state of
the system. Complete state controllability is neither
necessary nor sufficient for controlling the output of
the system. For this reason, it is desirable to define
separately complete output controllability. Consider
the system described by



Output Controllability

The system described by last Equations is said to be
completely output controllable if it is possible to
construct an unconstrained control vector u(t) that
will transfer any given initial output 𝒚(𝒕𝟎) to any final
output 𝒚(𝒕𝟏) in a finite time interval 𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏.

It can be proved that the condition for complete
output controllability is as follows:

The system described by last Equations is completely 
output controllable if and only if the mx(n+1)r matrix

is of rank m. Note that the presence of the Du term
always helps to establish output controllability.



Uncontrollable System

An uncontrollable system has a subsystem that is
physically disconnected from the input.

Stabilizability

For a partially controllable system, if the uncontrollable
modes are stable and the unstable modes are
controllable, the system is said to be stabilizable. For
example, the system defined by

is not state controllable. The stable mode that
corresponds to the eigenvalue of –1 is not controllable.
The unstable mode that corresponds to the eigenvalue of
1 is controllable. Such a system can be made stable by
the use of a suitable feedback. Thus this system is
stabilizable.



OBSERVABILITY

In this section we discuss the observability of linear
systems. Consider the unforced system described by
the following equations:

The system is said to be completely observable if every 
state 𝑿(𝒕𝟎) can be determined from the observation of 
𝒚(𝒕) over a finite time interval, 𝒕𝟎 ≤ 𝒕 ≤ 𝒕𝟏



OBSERVABILITY

The system is, therefore, completely observable if
every transition of the state eventually affects every
element of the output vector. The concept of
observability is useful in solving the problem of
reconstructing unmeasurable state variables from
measurable variables in the minimum possible length
of time. In this section we treat only linear, time-
invariant systems. Therefore, without loss of generality,
we can assume that 𝒕𝟎 = 𝟎.

The concept of observability is very important because,
in practice, the difficulty encountered with state
feedback control is that some of the state variables are
not accessible for direct measurement, with the result
that it becomes necessary to estimate the
unmeasurable state variables in order to construct the
control signals.



OBSERVABILITY

That such estimates of state variables are possible if
and only if the system is completely observable.

In discussing observability conditions, we consider the
unforced system. The reason for this is as follows: If the
system is described by



OBSERVABILITY

Since the matrices A, B, C, and D are known and u(t) is
also known, the last two terms on the right-hand side
of this last equation are known quantities. Therefore,
they may be subtracted from the observed value of
y(t). Hence, for investigating a necessary and sufficient
condition for complete observability, it suffices to
consider the system described by Equations



Complete Observability of Continuous-Time Systems

Consider the system described by Equations

The output vector y(t) is

where n is the degree of the characteristic polynomial.

Hence, we obtain



Complete Observability of Continuous-Time Systems

If the system is completely observable, then, given the
output y(t) over a time interval 𝟎 ≤ 𝒕 ≤ 𝒕𝟏 , x(0) is
uniquely determined from last Equation. It can be shown
that this requires the rank of the nmxn matrix

to be n.



Complete Observability of Continuous-Time Systems

From this analysis, we can state the condition for
complete observability as follows:

The system described by Equations 

is completely observable if and only if the nxnm matrix

is of rank n or has n linearly independent column
vectors. This matrix is called the observability matrix.



EXAMPLE

Consider the system described by

Is this system controllable(state &output) and 
observable?



EXAMPLE

Since the rank of the matrix

is 2, the system is completely state controllable.

For output controllability, let us find the rank of the
matrix . Since

the rank of this matrix is 1.

Hence, the system is completely output controllable.



EXAMPLE

To test the observability condition, examine the rank of

Since

the rank of is 2. Hence, the system is completely
observable.



Conditions for Complete Observability in the s Plane

The conditions for complete observability can also be
stated in terms of transfer functions or transfer
matrices.

The necessary and sufficient conditions for complete
observability is that no cancellation occur in the
transfer function or transfer matrix. If cancellation
occurs, the canceled mode cannot be observed in
the output.



EXAMPLE

Show that the following system is not completely
observable:

Where

Note that the control function u does not affect the
complete observability of the system. To examine
complete observability, we may simply set u=0. For this
system, we have



EXAMPLE

For this system, we have

Note that

Hence, the rank of the matrix

is less than 3. Therefore, the system is not 
completely observable.



EXAMPLE

In fact, in this system, cancellation occurs in the
transfer function of the system. The transfer function
between 𝑿𝟏(𝒔) and 𝑼(𝒔) is

and the transfer function between 𝒀(𝒔) and 𝑿𝟏(𝒔) is

Therefore, the transfer function between the output 
𝒀(𝒔) and the input 𝑼(𝒔) is



EXAMPLE

Clearly, the two factors (s+1) cancel each other. This
means that there are nonzero initial states 𝑿(𝟎),
which cannot be determined from the measurement
of 𝒚(𝒕) .

Comments

The transfer function has no cancellation if and only
if the system is completely state controllable and
completely observable. This means that the canceled
transfer function does not carry along all the
information characterizing the dynamic system.



Alternative Form of the Condition for Complete 
Observability

Consider the system described by Equations

Suppose that the transformation matrix P transforms
A into a diagonal matrix, or

where D is a diagonal matrix. Let us define

Then, can be written

Hence,



Alternative Form of the Condition for Complete 
Observability

The system is completely observable if none of the columns
of the mxn matrix CP consists of all zero elements. This is
because, if the 𝒊th column of CP consists of all zero
elements, then the state variable 𝒛𝒊(𝟎) will not appear in
the output equation and therefore cannot be determined
from observation of 𝒚(𝒕) .



Alternative Form of the Condition for Complete 
Observability

Thus, 𝑿(𝟎), which is related to 𝒁(𝟎) by the nonsingular 
matrix P, cannot be determined.

If the matrix A cannot be transformed into a diagonal
matrix, then by use of a suitable transformation matrix
S, we can transform A into a Jordan canonical form, or

where J is in the Jordan canonical form.

Let us define

Then, can be written



Alternative Form of the Condition for Complete 
Observability

Hence,

The system is completely observable if 

(1) no two Jordan blocks in J are associated with the
same eigenvalues,

(2) no columns of CS that correspond to the first row of
each Jordan block consist of zero elements, and

(3) no columns of CS that correspond to distinct
eigenvalues consist of zero elements.

To clarify condition (2), in next Example we have
encircled by dashed lines the columns of CS that
correspond to the first row of each Jordan block.



EXAMPLE

Are the following systems completely observable?



EXAMPLE

The following systems are completely observable.



Principle of Duality

We shall now discuss the relationship between
controllability and observability. We shall introduce the
principle of duality, due to Kalman, to clarify apparent
analogies between controllability and observability.

Consider the system 𝑺𝟏 described by



Principle of Duality

and the dual system 𝑺𝟐 defined by

The principle of duality states that the system 𝑺𝟏 is
completely state controllable (observable) if and only if
system 𝑺𝟐 is completely observable (state controllable).



Principle of Duality

To verify this principle, let us write down the necessary
and sufficient conditions for complete state
controllability and complete observability for systems
𝑺𝟏 and 𝑺𝟐 .

For system 𝑺𝟏 :

1. A necessary and sufficient condition for complete
state controllability is that the rank of the nxnr
matrix

be n.

2. A necessary and sufficient condition for complete
observability is that the rank of the nxnm matrix

be n.



Principle of Duality

For system 𝑺𝟐 :

1. A necessary and sufficient condition for complete
state controllability is that the rank of the nxnm
matrix

be n.

2. A necessary and sufficient condition for complete
observability is that the rank of the nxnr matrix

be n.



Principle of Duality

By comparing these conditions, the truth of this
principle is apparent. By use of this principle, the
observability of a given system can be checked by
testing the state controllability of its dual.

Detectability

For a partially observable system, if the unobservable
modes are stable and the observable modes are
unstable, the system is said to be detectable. Note that
the concept of detectability is dual to the concept of
stabilizability.



ex

Consider a completely state controllable system

Define the controllability matrix as M:

Show that

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are the coefficients of the characteristic
polynomial



ex

Solution

Let us consider the case where n=3.We shall show that

The left-hand side is

The right-hand side is



ex

The Cayley–Hamilton theorem states that matrix A satisfies
its own characteristic equation or, in the case of n=3,

Using last Equation, the third column of the right-hand side
of above Equation becomes

Thus, becomes

Hence, the left-hand side and the right-hand side of
Equation are the same. We have thus shown that Equation is
true. Consequently,



ex

The preceding derivation can be easily extended to the
general case of any positive integer n.



exx

Consider a completely state controllable system

Define

And

where the 𝑎𝑖 ’s are coefficients of the characteristic
polynomial



exx

Define also

Show that



exx

Solution. Let us consider the case where n=3.We shall show
that

we have

Hence, Equation can be rewritten as



exx

Therefore, we need to show that

The left-hand side of Equation is

The right-hand side of Equation is



exx

Thus, we have shown that

Next, we shall show that

Note that Equation can be written as

Noting that



exx

Noting that

we have

The derivation shown here can be easily extended to the
general case of any positive integer n.
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