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Principle of Duality

By comparing these conditions, the truth of this
principle is apparent. By use of this principle, the
observability of a given system can be checked by
testing the state controllability of its dual.

Detectability

For a partially observable system, if the unobservable
modes are stable and the observable modes are
unstable, the system is said to be detectable. Note that
the concept of detectability is dual to the concept of
stabilizability.
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INTRODUCTION

This chapter discusses state-space design methods
based on the pole-placement method, observers, the
quadratic optimal regulator systems, and
introductory aspects of robust control systems. The
pole-placement method is somewhat similar to the
root-locus method in that we place closed-loop poles
at desired locations. The basic difference is that in
the root-locus design we place only the dominant
closed-loop poles at the desired locations, while in
the pole-placement design we place all closed-loop
poles at desired locations.



INTRODUCTION

We begin by presenting the basic materials on pole
placement in regulator systems.

We then discuss the design of state observers,
followed by the design of regulator systems and
control systems using the pole-placement-with-state-
observer approach. Then, we discuss the quadratic
optimal regulator systems.



POLE PLACEMENT

In this section we shall present a design method
commonly called the pole-placement or pole-assignment
technique. We assume that all state variables are
measurable and are available for feedback. It will be
shown that if the system considered is completely state
controllable, then poles of the closed-loop system may
be placed at any desired locations by means of state
feedback through an appropriate state feedback gain
matrix.

The present design technique begins with a
determination of the desired closed-loop poles based on
the transient-response and/or frequency-response
requirements, such as speed, damping ratio, or
bandwidth, as well as steady-state requirements.



POLE PLACEMENT

Let us assume that we decide that the desired
closed-loop poles are to be at 𝒔 = 𝝁𝟏, 𝒔 = 𝝁𝟐 ,…. , 𝒔
= 𝝁𝒏. By choosing an appropriate gain matrix for
state feedback, it is possible to force the system to
have closed-loop poles at the desired locations,
provided that the original system is completely state
controllable.

we limit our discussions to single-input, single-output
systems. That is, we assume the control signal u(t)
and output signal y(t) to be scalars. In the derivation
in this section we assume that the reference input
r(t) is zero.



POLE PLACEMENT

In what follows we shall prove that a necessary and
sufficient condition that the closed-loop poles can be
placed at any arbitrary locations in the s plane is that the
system be completely state controllable. Then we shall
discuss methods for determining the required state
feedback gain matrix.

It is noted that when the control signal is a vector
quantity, the mathematical aspects of the pole-
placement scheme become complicated. (When the
control signal is a vector quantity, the state feedback gain
matrix is not unique. It is possible to choose freely more
than n parameters; that is, in addition to being able to
place n closed-loop poles properly, we have the freedom
to satisfy some or all of the other requirements, if any, of
the closed-loop system.)



Design by Pole Placement

In the conventional approach to the design of a
single input, single-output control system, we design
a controller (compensator) such that the dominant
closed-loop poles have a desired damping ratio 𝜻 and
a desired undamped natural frequency 𝝎𝒏. In this
approach, the order of the system may be raised by 1
or 2 unless pole–zero cancellation takes place. Note
that in this approach we assume the effects on the
responses of nondominant closed-loop poles to be
negligible.



Design by Pole Placement

Different from specifying only dominant closed-loop
poles (the conventional design approach), the
present pole-placement approach specifies all
closed-loop poles. (There is a cost associated with
placing all closed-loop poles, however, because
placing all closed loop poles requires successful
measurements of all state variables or else requires
the inclusion of a state observer in the system.)
There is also a requirement on the part of the system
for the closed-loop poles to be placed at arbitrarily
chosen locations. The requirement is that the system
be completely state controllable. We shall prove this
fact in this section.



Design by Pole Placement

Consider a control system

We shall choose the control signal to be



Design by Pole Placement

This means that the control signal u is determined by an 
instantaneous state. Such a scheme is called state 
feedback. The 1xn matrix K is called the state feedback 
gain matrix. We assume that all state variables are 
available for feedback. In the following analysis we 
assume that u is unconstrained. 



Design by Pole Placement

This closed-loop system has no input. Its objective is to
maintain the zero output. Because of the disturbances
that may be present, the output will deviate from zero.
The nonzero output will be returned to the zero reference
input because of the state feedback scheme of the
system. Such a system where the reference input is
always zero is called a regulator system. (Note that if the
reference input to the system is always a nonzero
constant, the system is also called a regulator system.)
Then

The solution of this equation is given by



Design by Pole Placement

where x(0) is the initial state caused by external
disturbances. The stability and transient response
characteristics are determined by the eigenvalues of
matrix A-BK. If matrix K is chosen properly, the matrix
A-BK can be made an asymptotically stable matrix, and
for all x(0) ≠ 0, it is possible to make x(t) approach 0 as t
approaches infinity. The eigenvalues of matrix A-BK are
called the regulator poles. If these regulator poles are
placed in the left-half s plane, then x(t) approaches 0 as t
approaches infinity. The problem of placing the regulator
poles (closed-loop poles) at the desired location is called
a pole-placement problem.



Necessary and Sufficient Condition for Arbitrary Pole Placement

In what follows, we shall prove that arbitrary pole placement
for a given system is possible if and only if the system is
completely state controllable.

We shall now prove that a necessary and sufficient condition
for arbitrary pole placement is that the system be completely
state controllable. We shall first derive the necessary
condition. We begin by proving that if the system is not
completely state controllable, then there are eigenvalues of
matrix A-BK that cannot be controlled by state feedback.

Suppose that the system

is not completely state controllable.

Then the rank of the controllability matrix is less than n, or



Necessary and Sufficient Condition for Arbitrary Pole Placement

This means that there are q linearly independent column
vectors in the controllability matrix. Let us define such q
linearly independent column vectors as 𝒇𝟏 , 𝒇𝟐 , …. , 𝒇𝒒.
Also, let us choose n-q additional n-vectors 𝑽𝒒+𝟏, 𝑽𝒒+𝟐,
…. , 𝑽𝒒 such that

is of rank n. Then it can be shown that
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Now define

Then we have



Necessary and Sufficient Condition for Arbitrary Pole Placement

Where 𝐈𝒒 is a q-dimensional identity matrix and 𝐈𝒏−𝒒 is an 𝒏
− 𝒒 -dimensional identity matrix.

Notice that the eigenvalues of 𝐀𝟐𝟐 do not depend on K. Thus,
if the system is not completely state controllable, then there
are eigenvalues of matrix 𝐀 that cannot be arbitrarily placed.
Therefore, to place the eigenvalues of matrix 𝐀
− 𝐁𝐊 arbitrarily, the system must be completely state
controllable (necessary condition).

Next we shall prove a sufficient condition: that is, if the system
is completely state controllable, then all eigenvalues of matrix
𝐀 can be arbitrarily placed.

In proving a sufficient condition, it is convenient to transform
the state equation into the controllable canonical form.



Necessary and Sufficient Condition for Arbitrary Pole Placement

Define a transformation matrix 𝐓 by

where 𝐌 is the controllability matrix

And

where the 𝑎𝑖 ’s are coefficients of the characteristic
polynomial



Necessary and Sufficient Condition for Arbitrary Pole Placement

Define a new state vector ෡𝐗 by

If the rank of the controllability matrix 𝐌 is n (meaning
that the system is completely state controllable), then the
inverse of matrix 𝐓 exists, and

where



Necessary and Sufficient Condition for Arbitrary Pole Placement

Thus, given a state equation, it can be transformed into
the controllable canonical form if the system is
completely state controllable and if we transform the
state vector 𝐗 into state vector by use of the
transformation matrix 𝐓.

Let us choose a set of the desired eigenvalues as 𝝁𝟏, 𝝁𝟐,
… , 𝝁𝒏. Then the desired characteristic equation becomes

Let us write

When
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is used to control the system given by

the system equation becomes

The characteristic equation is

This characteristic equation is the same as the
characteristic equation for the system, defined by
Equation

When is used as the control signal.

This can be seen as follows: Since           
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the characteristic equation for this system is

Now let us simplify the characteristic equation of the
system in the controllable canonical form.

we have



Necessary and Sufficient Condition for Arbitrary Pole Placement



Necessary and Sufficient Condition for Arbitrary Pole Placement

This is the characteristic equation for the system with
state feedback. Therefore, it must be equal desired
characteristic equation. By equating the coefficients of
like powers of s, we get

Solving the preceding equations for the 𝛿’s and

substituting them into Equation

we obtain



Necessary and Sufficient Condition for Arbitrary Pole Placement

Thus, if the system is completely state controllable, all
eigenvalues can be arbitrarily placed by choosing matrix K
according to last Equation. We have thus proved that a
necessary and sufficient condition for arbitrary pole
placement is that the system be completely state
controllable. It is noted that if the system is not
completely state controllable, but is stabilizable, then it is
possible to make the entire system stable by placing the
closed-loop poles at desired locations for q controllable
modes. The remaining n-q uncontrollable modes are
stable. So the entire system can be made stable.



Determination of Matrix 𝐊 Using Transformation Matrix 𝐓

Suppose that the system is defined by

and the control signal is given by

The feedback gain matrix K that forces the eigenvalues of
A-BK to be 𝝁𝟏 , 𝝁𝟐 , … , 𝝁𝒏 (desired values) can be
determined by the following steps :

Step 1: Check the controllability condition for the system.
If the system is completely state controllable, then use
the following steps:

Step 2: From the characteristic polynomial for matrix A,
that is,

determine the values of 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏.



Determination of Matrix 𝐊 Using Transformation Matrix 𝐓

Step 3: Determine the transformation matrix 𝐓 that
transforms the system state equation into the
controllable canonical form. (If the given system equation
is already in the controllable canonical form, then 𝐓 = 𝐈.)
It is not necessary to write the state equation in the
controllable canonical form. All we need here is to find
the matrix 𝐓. The transformation matrix 𝐓 is given by
Equation

where 𝐌 and 𝐖 are given above.

Step 4: Using the desired eigenvalues (desired closed-loop 
poles), write the desired characteristic polynomial:

and determine the values of  𝜶𝟏, 𝜶𝟐, … , 𝜶𝒏.



Determination of Matrix 𝐊 Using Transformation Matrix 𝐓

Step 5: The required state feedback gain matrix K can be 
determined from Equation :



Determination of Matrix 𝐊 Using Direct Substitution Method

If the system is of low order (𝒏 ≤ 𝟑), direct substitution of
matrix 𝐊 into the desired characteristic polynomial may be
simpler. For example, if 𝒏 = 𝟑, then write the state feedback
gain matrix 𝐊 as

Substitute this 𝐊 matrix into the desired characteristic
polynomial |s I - A + BK| and equate it to (𝒔 − 𝝁𝟏), (𝒔 − 𝝁𝟐),
(𝒔 − 𝝁𝟑), or

Since both sides of this characteristic equation are
polynomials in s, by equating the coefficients of the like
powers of s on both sides, it is possible to determine the
values of 𝑘1, 𝑘2 , and 𝑘3 . This approach is convenient if n=2 or
3. (For n=4, 5, 6, … , this approach may become very tedious.)



Determination of Matrix 𝐊 Using Ackermann’s Formula

Note that if the system is not completely controllable,
matrix 𝐊 cannot be determined. (No solution exists.)

There is a well-known formula, known as Ackermann’s
formula, for the determination of the state feedback gain
matrix 𝐊. We shall present this formula in what follows.

Consider the system

where we use the state feedback control u=–Kx. We
assume that the system is completely state controllable.
We also assume that the desired closed-loop poles are at



Determination of Matrix 𝐊 Using Ackermann’s Formula

Use of the state feedback control

modifies the system equation to

Let us define

The desired characteristic equation is

Since the Cayley–Hamilton theorem states that ෩𝐀 satisfies
its own characteristic equation, we have

We shall utilize Equation to derive Ackermann’s formula.



Determination of Matrix 𝐊 Using Ackermann’s Formula

To simplify the derivation, we consider the case where
n=3. (For any other positive integer n, the following
derivation can be easily extended.)

Consider the following identities:

Multiplying the preceding equations in order by 𝛼3, 𝛼2 ,
𝛼1 , and 𝛼0 (where 𝛼0=1), respectively, and adding the
results, we obtain



Determination of Matrix 𝐊 Using Ackermann’s Formula

Referring to Equation

we have

Also, we have



Determination of Matrix 𝐊 Using Ackermann’s Formula

Substituting the last two equations, we have

Since the system is completely state controllable, the
inverse of the controllability matrix



Determination of Matrix 𝐊 Using Ackermann’s Formula

exists. Premultiplying both sides of Equation ( ) by
the inverse of the controllability matrix, we obtain



Determination of Matrix 𝐊 Using Ackermann’s Formula

For an arbitrary positive integer n, we have

Equation (𝐊) is known as Ackermann’s formula for the
determination of the state feedback gain matrix 𝐊.



Choosing the Locations of Desired Closed-Loop Poles.

The first step in the pole-placement design approach is to
choose the locations of the desired closed-loop poles. The
most frequently used approach is to choose such poles
based on experience in the root-locus design, placing a
dominant pair of closed-loop poles and choosing other
poles so that they are far to the left of the dominant
closed-loop poles.

Note that if we place the dominant closed-loop poles far
from the 𝑗𝜔 axis, so that the system response becomes
very fast, the signals in the system become very large,
with the result that the system may become nonlinear.
This should be avoided.



EXAMPLE

The system uses the state feedback control u=–Kx. Let us 
choose the desired closed-loop poles at

(We make such a choice because we know from experience 
that such a set of closed-loop poles will result in a reasonable 
or acceptable transient response.) Determine the state 
feedback gain matrix K.



EXAMPLE

First, we need to check the controllability matrix of the
system. Since the controllability matrix M is given by



EXAMPLE

we find that |M|=–1, and therefore, rank M=3. Thus, the
system is completely state controllable and arbitrary pole
placement is possible.

Next, we shall solve this problem. We shall demonstrate
each of the three methods presented.

Method 1: The characteristic equation for the system is



EXAMPLE

Hence,

The desired characteristic equation is

Hence,

we have

where T=I for this problem because the given state
equation is in the controllable canonical form.

Then we have



EXAMPLE

Method 2: By defining the desired state feedback gain
matrix K as

and equating

with the desired characteristic equation, we btain



EXAMPLE

Thus,

from which we obtain

Or

Method 3: The third method is to use Ackermann’s
formula.

Since



EXAMPLE

and



EXAMPLE

we obtain

As a matter of course, the feedback gain matrix K obtained by
the three methods are the same. With this state feedback, the
closed-loop poles are placed at s=–2 ; j4 and s=–10, as desired.
It is noted that if the order n of the system were 4 or higher,
methods 1 and 3 are recommended, since all matrix
computations can be carried out by a computer. If method 2 is
used, hand computations become necessary because a
computer may not handle the characteristic equation with
unknown parameters k1, k2 , … , kn.



DESIGN OF SERVO SYSTEMS
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