

Coulomb Damping:

Viscous damping is convenient mathematically but <u>not realistic</u> and is not the only type of dissipative mechanism present in modern structural systems.

One such mechanism is sliding friction known as Coulomb Damping. Coulomb damping is a force used to model dry friction that takes place between two surfaces in contact and moving relative to each other.

Any initial displacement greater than the <u>locking one</u>, $u_l = F_d / k$, can put the system in free vibration regime. The Eq. of motion depends on its direction: $m\ddot{u} + ku = -F_d$ or, $m\ddot{u} + ku = +F_d$ Both forms can be written as: $\ddot{u} + \omega^2 u = -(sign(\dot{u}))(F_d / m)$, where $\omega^2 = k / m$ The complete solution of this ODE, is : $u(t) = A \cos(\omega t) + B \sin(\omega t) - (sign(\dot{u}))u_l$ The constants *A* and *B*, are determined according to the initial conditions (ICs). One possible scenario is to displace the mass to the right by $u_0 > u_l$, and let free to vibrate.

 $u(t) = A\cos(\omega t) + B\sin(\omega t) - (\operatorname{sign}(\dot{u}))u_{1}$ First half cycle starts at t = 0: $u(0) = u_0 > u_1$, $or : ku_0 > F_d$. So motion is to left and velocity at t = 0, is null. Solution (displacement & velocity) has the form: $u(t) = A \cos(\omega t) + B \sin(\omega t) + u_1$ $\dot{u}(t) = -A\omega\sin(\omega t) + B\omega\cos(\omega t)$ with $\dot{u}(0) = 0, B = 0, \&$ with $u(0) = u_0, A = u_0 - u_1$ So the displacement and velocity functions are: $u(t) = (u_0 - u_1)\cos(\omega t) + u_1, \& \dot{u}(t) = -\omega(u_0 - u_1)\sin(\omega t)$ The motion continues to the left until: $\dot{u}(t) = 0 \Longrightarrow \sin(\omega t) = 0$, when $t = \pi/\omega$ Where the displacement reaches the value: $u(\pi / \omega) = (u_0 - u_1)\cos(\pi) + u_1 = -u_0 + 2u_1$

 $u(t) = A\cos(\omega t) + B\sin(\omega t) - (\operatorname{sign}(\dot{u}))u_{l}$

If $|\mathbf{u}(\pi/\omega)| > u_l$, the motion restarts to right with: $u(t) = A \cos(\omega t) + B \sin(\omega t) - u_l$ $\dot{u}(t) = -A \omega \sin(\omega t) + B \omega \cos(\omega t)$ with $\dot{u}(\pi/\omega) = 0, B = 0,$ & with $u(\pi/\omega) = -u_0 + 2u_l, A = u_0 - 3u_l$ So the displacement and velocity functions are: $u(t) = (u_0 - 3u_l) \cos(\omega t) - u_l,$ & $\dot{u}(t) = -\omega (u_0 - 3u_l) \sin(\omega t).$ The motion continues to the right until: $\dot{u}(t) = 0 \Rightarrow \sin(\omega t) = 0, \text{ when } t = 2\pi/\omega$

Where the displacement reaches the value: $u(2\pi/\omega) = (u_0 - 3u_1)\cos(2\pi) - u_1 = u_0 - 4u_1$

Final Result:

For every half-cycle of motion the amplitude loss is $2u_l = 2F_d/k$, and for a complete cycle the loss is $4u_l$.

So for *n* cycle (2*n* half-cycles) this loss is $4nu_l$.

When the amplitude becomes less than u_l , the motion stops and the mass is trapped in the locking zone.

Damped SDOF system

SDOF syste

 $T_n = 2\pi/\omega_n$

 $T_D = 2\pi/\alpha$

EX. 1. A block of mass m = 10kg is restrained by a spring of stiffness k = 5000 N/m and rests on a rough surface with coefficient of friction $\mu = 0.10$.

Calculate the number of half-cycles required for the mass to come to rest if a displacement of 25mm is imposed on the block and released with zero velocity.

SOLUTION:

1. The lock displacement u_l is: $u_l = \frac{F_d}{k} = \frac{\mu g m}{k} = \frac{0.1 \times 9.81 \times 10}{5000} = 1.96 \times 10^{-3} \text{ m}$

2. The number of half-period of motion *n*, is given by –

 $-u_l \le u_0 - 2\mathbf{n}u_l \le u_l$

EX. 2. A block of mass m = 200 kg is restrained by a spring of stiffness k = 6000 N/m and rests on a rough surface with coefficient of friction $\mu = 0.15$.

Calculate the number of half-cycles required for the mass to come to rest if a displacement of 20mm is imposed on the block and released with zero velocity.

4/22/2024

Ex. 3. For the system shown in figure, m = 500 kg, k = 400 kN/m, $\mu = 0.15$ and the initial conditions are: $u_0 = 16$ cm, $\dot{u}_0 = 0$. Determine the amplitude after 8 half-cycles and the number of half-cycles of motion completed before the mass comes to rest +u+u $4u_1$ $=2\pi/\omega$ Linear decay X 5π/ω π/ω $3\pi/\omega$ $+u_l$ m $4\pi/\omega$ $2\pi/\omega$ 6π/ω Locking zone $T=2\pi/\omega$ 2u $-u_0$

