

Basics of Counting

Epp sections 6.2 & 6.3

The product rule

- Also called the multiplication rule
- If there are n₁ ways to do task 1, and n₂ ways to do task 2
 - Then there are $n_1 n_2$ ways to do both tasks in sequence
 - This applies when doing the "procedure" is made up of separate tasks
 - We must make one choice AND a second choice

Product rule example

- Sample question
 - There are 18 math majors and 325 CS majors
 - How many ways are there to pick one math major and one CS major?

• Total is 18 * 325 = 5850

Product rule example

More sample questions...

- How many strings of 4 decimal digits...
- a) Do not contain the same digit twice?
 - We want to chose a digit, then another that is not the same, then another...
 - First digit: 10 possibilities
 - Second digit: 9 possibilities (all but first digit)
 - Third digit: 8 possibilities
 - Fourth digit: 7 possibilities
 - \bullet Total = 10*9*8*7 = 5040
- b) End with an even digit?
 - First three digits have 10 possibilities
 - Last digit has 5 possibilities
 - Total = 10*10*10*5 = 5000 Dr. lyad Hatem

The sum rule

- Also called the addition rule
- If there are n₁ ways to do task 1, and n₂ ways to do task 2
 - If these tasks can be done at the same time, then...
 - Then there are n_1+n_2 ways to do one of the two tasks
 - We must make one choice OR a second choice

Sum rule example

- Sample question
 - There are 18 math majors and 325 CS majors
 - How many ways are there to pick one math major or one CS major?

• Total is 18 + 325 = 343

Sum rule example

More sample questions

- How many strings of 4 decimal digits...
- Have exactly three digits that are 9s?
 - The string can have:
 - The non-9 as the first digit
 - OR the non-9 as the second digit
 - OR the non-9 as the third digit
 - OR the non-9 as the fourth digit
 - Thus, we use the sum rule
 - For each of those cases, there are 9 possibilities for the non-9 digit (any number other than 9)
 - Thus, the answer is 9+9+9+9=36

More complex counting problems

We combining the product rule and the sum rule

Thus we can solve more interesting and complex problems

Wedding pictures example

- Consider a wedding picture of 6 people
 - There are 10 people, including the bride and groom
- How many possibilities are there if the bride must be in the picture
 - Product rule: place the bride AND then place the rest of the party
 - First place the bride
 - She can be in one of 6 positions
 - Next, place the other five people via the product rule
 - There are 9 people to choose for the second person, 8 for the third, etc.
 - Total = 9*8*7*6*5 = 15120
 - Product rule yields 6 * 15120 = 90,720 possibilities 9

Wedding pictures example

- Consider a wedding picture of 6 people
 - There are 10 people, including the bride and groom
- b) How many possibilities are there if the bride and groom must both be in the picture
 - Product rule: place the bride/groom AND then place the rest of the party
 - First place the bride and groom
 - She can be in one of 6 positions
 - He can be in one 5 remaining positions
 - Total of 30 possibilities
 - Next, place the other four people via the product rule
 - There are 8 people to choose for the third person, 7 for the fourth, etc.
 - Total = 8*7*6*5 = 1680 Iyad Hatem

Product rule yields 30 * 1680 = 50,400 possibilities

Wedding pictures example

- Consider a wedding picture of 6 people
 - There are 10 people, including the bride and groom
- How many possibilities are there if only one of the bride and groom are in the picture
 - Sum rule: place only the bride
 - Product rule: place the bride AND then place the rest of the party
 - First place the bride
 - She can be in one of 6 positions
 - Next, place the other five people via the product rule
 - There are 8 people to choose for the second person, 7 for the third, etc.
 - » We can't choose the groom!
 - \bullet Total = 8*7*6*5*4 = 6720
 - Product rule yields 6 * 6720 = 40,320 possibilities
 - OR place only the groom
 - Same possibilities as for bride: 40,320
 - Sum rule yields 40,320 + 40,320 = 80,640 possibilities
 Dr. lyad Hatem

Wedding pictures example

- Consider a wedding picture of 6 people
 - There are 10 people, including the bride and groom
- Alternative means to get the answer
- c) How many possibilities are there if only one of the bride and groom are in the picture
 - Total ways to place the bride (with or without groom): 90,720
 - From part (a)
 - Total ways for both the bride and groom: 50,400
 - From part (b)
 - Total ways to place ONLY the bride: 90,720 50,400 = 40,320
 - Same number for the groom
 - Total = 40,320 + 40,320 y= 280 g 640

The inclusion-exclusion principle

 When counting the possibilities, we can't include a given outcome more than once!

- $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
 - Let A₁ have 5 elements, A₂ have 3 elements,
 and 1 element be both in A₁ and A₂
 - Total in the union is 5+3-1=7, not 8

Inclusion-exclusion example

- How may bit strings of length eight start with 1 or end with 00?
- Count bit strings that start with 1
 - Rest of bits can be anything: $2^7 = 128$
 - This is $|A_1|$
- Count bit strings that end with 00
 - Rest of bits can be anything: $2^6 = 64$
 - This is $|A_2|$
- Count bit strings that both start with 1 and end with 00
 - Rest of the bits can be anything: $2^5 = 32$
 - This is $|A_1 \cap A_2|$
- Use formula $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
- Total is 128 + 64 32 = 160

Bit string possibilities

 How many bit strings of length 10 contain either 5 consecutive 0s or 5 consecutive 1s?

Bit string possibilities

- Consider 5 consecutive 0s first
- Sum rule: the 5 consecutive 0's can start at position 1, 2, 3, 4, 5, or 6
 - Starting at position 1
 - Remaining 5 bits can be anything: $2^5 = 32$
 - Starting at position 2
 - First bit must be a 1
 - Otherwise, we are including possibilities from the previous case!
 - Remaining bits can be anything: 2⁴ = 16
 - Starting at position 3
 - Second bit must be a 1 (same reason as above)
 - First bit and last 3 bits can be anything: 2⁴ = 16
 - Starting at positions 4 and 5 and 6
 - Same as starting at positions 2 or 3: 16 each
 - Total = 32 + 16 + 16 + 16 + 16 + 16 = 112
- The 5 consecutive 1's follow the same pattern, and have 112 possibilities
- There are two cases counted twice (that we thus need to exclude): 0000011111 and 1111100000 Dr. Ivad Hatem
- Total = 112 + 112 2 = 222

Tree diagrams

 We can use tree diagrams to enumerate the possible choices

 Once the tree is laid out, the result is the number of (valid) leaves

Tree diagrams example

 Use a tree diagram to find the number of bit strings of length four with no three consecutive 0s

An example closer to home...

- How many ways can the Cavs finish the season 9 and 2?
 - This was from fall '04....

