

1- الأدوية وصفات الدواء الهدف : Properties of ideal medication

تُعرف الأدوية بما يلي:

- هي العناصر القادرة على الشفاء من المرض أو الوقاية منه أو تخفيف أعراضه أو علاجه
- مادة (ما عدا الطعام) والتي تهدف إلى التأثير على وظيفة ما في الجسم
- مادة والتي تستخدم بوصفها عنصرا من دواء ولكن ليس جهاز أو مكون أو جزء أو ملحق للجهاز
- يشمل هذا التعريف المنتجات البيولوجية وتنطبق عليها نفس القوانين واللوائح، ولكن مع وجود فارق هو بشأن عملية التصنيع (عملية كيميائية مقابل عملية بيولوجية).

Medication: medication are identified as:

- A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease.
- A substance (other than food) intended to affect the structure or any function of the body.
- A substance intended for use as a component of a medicine but not a device or a component, part or accessory of a device.
- Biological products are included within this definition and are generally covered by the same laws and regulations, but differences exist regarding their manufacturing processes (chemical process versus biological process).

بالنسبة لمواصفات الدواء الهدف فهي:

- أن يعطي التأثير الدوائي المرغوب بالتحديد
- ألا يكون سام ولا يسبب آثار جانبية سيئة
- إمكانية تحضير أشكال صيدلية ذات مطاوعة جيدة (طرق ايتاء سهلة، طعم جيد، جرعات قليلة.)
- إمكانية اعطائه بأقل جرعة ممكنة كما وتكراراً
- إمكانية تصنيعه بسهولة وكلفة قليلة
- أن ينطوي من الجسم بشكل كامل بعد القيام بالتأثيرات المطلوبة
- إمكانية تخزينه لفترة معينة دون حصول أي تغيرات فيزيائية، كيميائية أو علاجية (أي أن يكون ثابتاً)

Properties of ideal medication:

- It gives the desired pharmacological effects.

- It should be non-toxic and should have no side effects
- The possibility of preparation of dosage forms (easy methods of delivering, good taste, low doses)
- The possibility of administrating it with the lowest possible dose and the few number of time
- Low cost
- The drug should be easily eliminated from the body by simple metabolic processes after its action.
- It should be physio chemical stable during storage.

2- مصادر الأدوية Medication sources

للأدوية مصادران رئيسان:

- المصدر الطبيعي
- المصدر الكيميائي
-

مع تطور العلوم ومع الهندسة الوراثية بدأنا نحصل على أدوية عن طريق الجينات وال DNA (Recombinant DNA technology)

1.2- المصادر الطبيعية Natural sources

بالنسبة المصادر الطبيعية للأدوية Natural sources of drugs فهي:

- نبات Plant
- حيوان Animal
- معادن Minerals
- أحياe دقيقة Microbiological

A. النباتات Plant :

تعتبر المصادر الأقدم للعقار ويمكن استخدام أجزاء متعددة من النبات مثل الأوراق أو الساق أو الجذور أو الثمار. أما عن طريقة استخدامها كأدوية فمتعددة مثل: طحن الأوراق المجففة ومن ثم يؤخذ منها النقيع أو قد يتم استخلاص المواد الفعالة مباشرة منها.

أمثلة على المواد المستخرجة من النباتات الطبية:

- الزيوت العطرية: اليانسون
- المورفين: المادة المخدرة والمسكنة القوية لإزالة الآلام الشديدة، مثل آلام مرضى السرطان وغيرها، و تستخرج هذه المادة من نبتة تسمى بالخشخاش

▪ مادة ديجوكسين: تستخدم لأمراض القلب وقوية عضلات القلب تستخرج من نبات يسمى قفاز الثعلب أو القمعية الأرجوانية (Fox gloves).

Natural sources of medication (Plant)

The oldest source of medication:

- All parts of the plants are used i.e. leaves, stem, bark, fruits and roots
- Leaves are ground and used as infusion
- Extraction of active substances

Examples of plant sources is the essential oil from anise. Other examples are in the following table:

Example	Trade Name	Classification
Chinchona Bark	Quinidine	Antiarrhythmic, Malaria
Purple Foxglove	Digitalis	Cardiotonic
Poppy Plant (Opium)	Paregoric, Morphine, Codeine	Antidiarrheal, Analgesic, Analgesic, Antitussive

B. الحيوان Animal

- زيت كبد الحوت: مصدر للعديد من الفيتامينات مثل آود
- الأنسولين: يحصل عليه من بنكرياس الخنزير ويستعمل لعلاج السكري
- اللقاحات: تستخدم الحيوانات لتحضير اللقاحات

Animal

- Cod liver oil is used as a source of vitamin A and D.
- Pancreas is a source of Insulin, used in treatment of Diabetes.
- Blood of animals is used in preparation of vaccines.

C. المعادن Minerals

تستخدم الأملاح المختلفة مثل ملح الطعام (يستخدم في تحضير المصل الفيزيولوجي) بالإضافة إلى أملاح المغنيزيوم أو الألمنيوم.

Different salts like NaCl and salts of magnesium and Aluminum

Uses	drug	mineral

antacid	Carbonate magnesium	magnesium
Anemia	Ferrous sulphate	iron
minor burns	Zinc oxide ointment	zinc
osteoporosis	Calcium sulphate	calcium
Arthritis	Gold salts	Gold

2.2- المصادر الكيميائية للأدوية

الأدوية التي يتم تخليقها عن طريق تفاعلات كيميائية معينة تحت ظروف مخبرية خاصة وتشمل:

- **الأدوية الصناعية synthetic:** هي مواد يتم تصنيعها بشكل كامل وفق تفاعلات كيميائية وتعود واحدة من المجموعات الرئيسية والهامة بين المواد الدوائية مثل الكثير من المضادات الحيوية ومضادات الالتهاب، مسكنات الألم،.....
- **الأدوية نصف الصناعية semisynthetic:** هي مواد مستخلصة من مصادر طبيعية ثم يتم اجراء بعض التعديلات على بنيتها (تفاعلات كيميائية) للحصول على التأثير الدوائي المطلوب، مثال الحصول على الأمبسيلين (مضاد للجراثيم) من البنسلين G (صاد حيوي)

Chemical sources of medication

This means the medications, which are induced through chemical reactions and under certain conditions. They are include:

► Synthetic Sources:

Synthetic medications are obtained by chemical reactions. Examples include Antibiotics and anti-inflammatories

► Semi Synthetic Source

When the nucleus of drug obtained from natural source is retained but the chemical structure is altered, we call it semi-synthetic.

Examples include, Ampicillin from Pensillin G and Methyl testosterone from testosterone.

3- تصنیف الأدویة :Classification of medication

تصنیف الأدویة تبعاً لـ : Medication are classified according to

أ. شکلها وقوامها A

ب. طريقة الاستعمال B

د. آيات عبود

د. ديمة دياب

C. الوصف description

D. السمية والخطورة toxicity and hazard

E. التركيب composition

F. طريقة لتحضير preparation.

A. الشكل والقوام Forms and textures

• أشكال صلبة: مساحيق - مضغوطات - كبسولات

• أشكال نصف صلبة: مراهم - كريمات - تحاميل

• أشكال سائلة: شرابات - القطرات العينية والانفية والاذنية - الأكاسير

• أشكال غازية: بخاخات

- **Solid dosage forms:** Powder, tablet capsule
- **Semi-solid dosage forms:** Cream, ointment, suppository
- **Liquid dosage forms:** Syrup, eye drops, nasal drops
- **Gas dosage forms:** Aerosol

B. طريقة الاستعمال Usage

• أدوية خارجية:

❖ تطبق على الجلد مثل المراهم واللصاقات

❖ تأثيرها موضعيا

• أدوية داخلية:

❖ تعطى فمويا أو عن طريق المستقيم أو بالوريد أو بالعضل (الشرابات، التحاميل، الأشكال الحلقية)

❖ تأثيرها عاما في الجسم

القطرات العينية والعينية فتطبق بشكل عام للتأثير الموضعي لكنها تصنف كأدوية داخلية".

Classification according to usage:

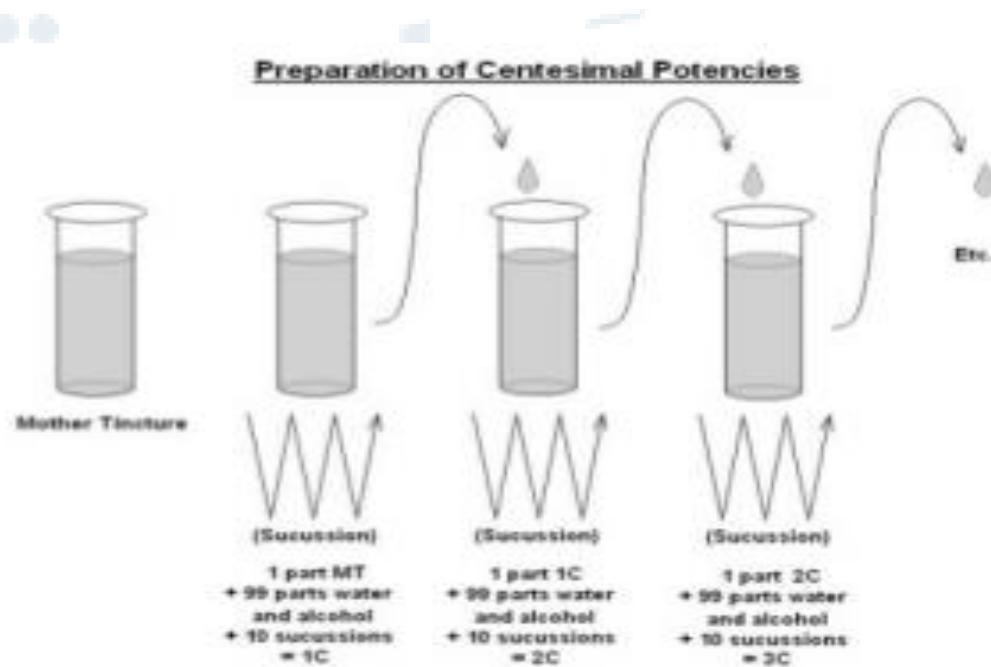
- **External drugs**
 - ❖ Applied on the skin (ointment, cream)
 - ❖ Topical effects
- **Internal drugs**
 - ❖ Methods of administration include oral, sublingual (dissolving the drug under the tongue), and rectal, parenteral routes (intravenous, Intramuscular)
 - ❖ Systemic effect.

"Eye drops and nasal drops are internal drugs"

C. الوصف description

تبعًا لهذا المعيار تصنف الأدوية إلى:

- **الأدوية الضدية Allopathy:** الأدوية المعروفة لدى كافة الناس والمحضرة كيميائياً بالمصانع وتجهز على أشكال صيدلانية


- **الأدوية المثلية Homopathy:** وهي شكل من أشكال الطب البديل، حيث تعتمد على العلاج المثل بالمثل، فعلى سبيل المثال مريض السكري يعالج بالسكريات وهذا النوع من الأدوية قليل الشيوع.

Classification according to prescription:

- **Allopathy:** refers to the conventional medical practices in use including all drugs, chemical synthesized, prepared in pharmaceutical dosage forms.
- **Homoeopathy:** a system of alternative medicine, based on the principle: **like cures like**.
Example: diabetic person is treated with carbohydrate.

- مؤسس المداواة المثلية:

العالم الألماني هانيمان (1755 - 1843) ويوجد دستور خاص بها يعرف باسم دستور الأدوية المثلية Homeopathy created in 1755 by Samuel Hahnemann. It is prepared depending German Homeopathic Pharmacopoeia (GHP) or Homöopathisches Arzneibuch (HAB).

D. التركيب Composition

- أدوية بسيطة: وهي محضرة من دواء واحد أو من دواعين.
- أدوية مركبة: تحضر من مادتين أو أكثر وتحتاج لعدة طرق وأعمال صيدلانية كالنخل والطحن.

- Simple medication: prepared from one or two drugs
- Complex medication : prepared from two drugs or more using several pharmaceutical methods like Sieving, grinding

E. طريقة التحضير preparation

• الأدوية الدستورية:

❖ تحضر حسب ما ورد في دساتير الأدوية المختلفة ولا يمكن اضافة أو حذف اي شيء منها لأنها صادرة عن الجهات الرسمية في كل بلد.

❖ الدواء الدستوري دائم وعاليماً لا يمكن تغيير المقادير الدوائية أو المواد الدالة في تركيبه

• الأدوية الوصفية:

❖ وصفي "انها تحضر بناء على وصفة "

❖ تحضر حسب رغبة الطبيب او حساب كتاب الأدوية الوطني.

❖ توصف لحالات مرضية قد لا ترد في دساتير الأدوية وهي أدوية مؤقتة

4- اكتشاف الدواء وتطويره Drug discovery and development

إن اكتشاف وتطوير دواء هي عملية معقدة ومكلفة جداً وتستمر هذه العملية كمتوسط زمني من المخبر الى الصيدلية 12 سنة على الأقل مع كلفة تقدر بـ 350 مليون \$.

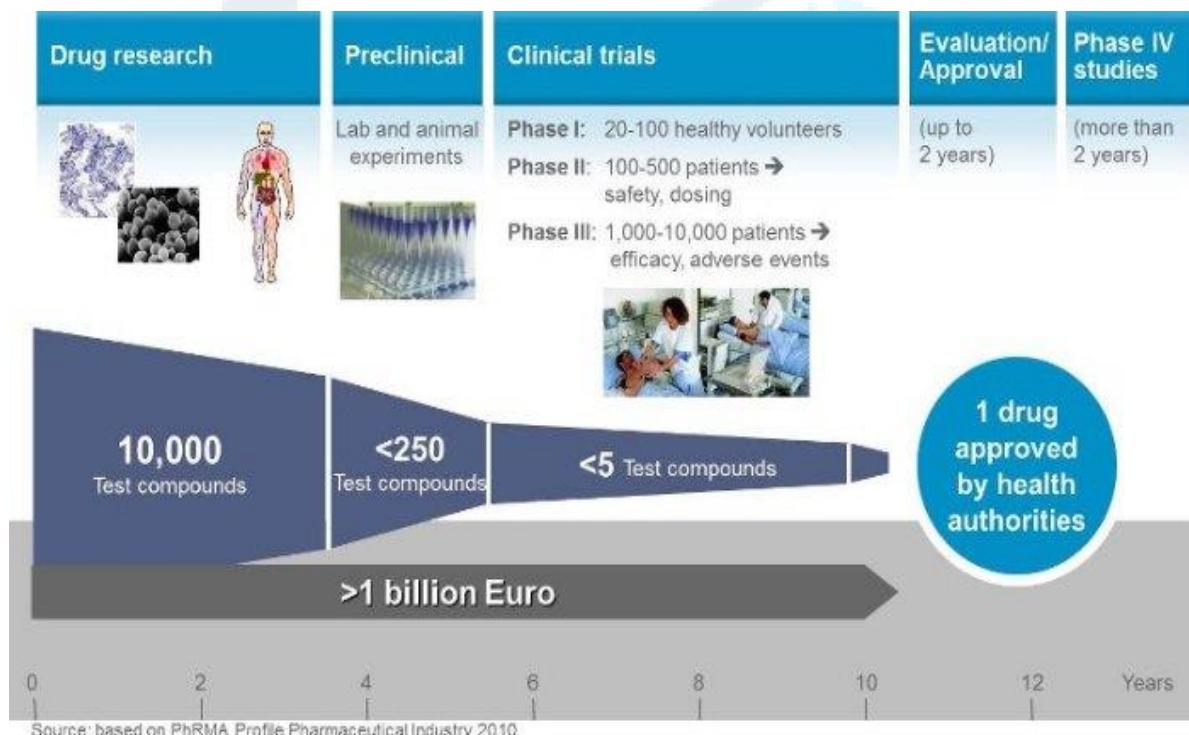
من بين 10000 مركب كيميائي مصطنع يتم اختبارها في المختبر كمرحلة أولى سيتم ترخيص مركب واحد فقط كدواء من قبل الجهات الصحية المختصة.

لكي يمنح الترخيص لأي دواء جديد يجب أن يمر بمراحل تسمى بعملية تصنيع (تطوير) الدواء حيث تنقسم مرحلة تطوير الدواء الى:

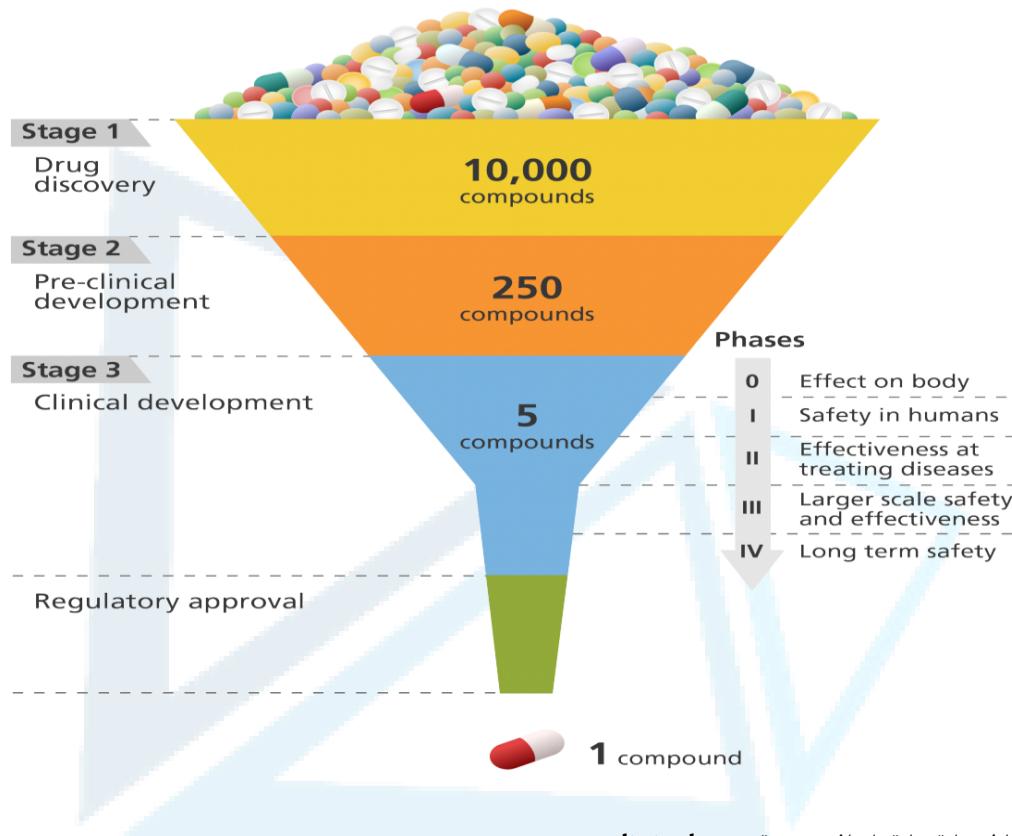
- المراحل ما قبل السريرية Preclinical: ما قبل تجريب الدواء على الإنسان.

- المراحل السريرية clinical: التي يبدأ فيها تجربة الدواء على الإنسان واستنباط نتائجه وهل أعراض جانبية أم لا وهل يكفي للعلاج أم بحاجة لإضافة عناصر أخرى.

Development of new drugs is a complex and costly process. It takes an average of 12 years and about \$350 million to get a new drug from the laboratory to the pharmacy shelf.


Only one in 10000 compounds which begin laboratory testing will be approved as medication by health authorities.

For the approval of new drug, it should be passed in steps, which are known as (drug development).


Drug development is divided into:

- **Preclinical step:** begins before testing in humans
- **Clinical step:** testing in humans

يوضح الشكل التالي مراحل تطوير الدواء:

جامعة
المنارة
MANARA UNIVERSITY

A. المرحلة ما قبل السريرية Preclinical step

الهدف من هذه المرحلة: الحصول على معلومات أولية عن الفعالية، السمية، الحرائك الدوائية والوصول بالدواء إلى أقصى درجات الأمان.

تشتمل المرحلة ما قبل السريرية المراحل أو الخطوات التالية:

- اختيار الهدف المراد التأثير عليه بالعلاج: يقصد بذلك الهدف البيولوجي المراد التأثير عليه بالعلاج مثل: الحمض النووي، مستقبلات الغشاء الخلوي، مستقبلات الهرمونات، الإنزيمات والقنوات الأيونية
- اكتشاف الدواء: قدّماً كان اكتشاف الدواء عن طريق تحديد المادة الفعالة في العلاجات الشعبية وأحياناً أخرى مصادفة. مع التقدم التكنولوجي أصبح بالإمكان معرفة المرشح المناسب وطريقة تصنيعه وخصائصه وتحليله لضمان الفعالية العلاجية أي أصبح بالإمكان معرفة الدواء الفعال
- إجراء التعديلات على خواص الدواء: اختصار الدواء لعدد من الاختبارات الضرورية ليجعله قابلاً للاستخدام على البشر
- مرحلة تجربته على الحيوان قبل تجربته على الإنسان: تنقسم هذه العملية إلى مراحلتين

In Vitro (في الزجاج) تأثير الدواء على الأنسجة والأعضاء والخلايا والأجزاء الخلوية
والبروتينات

In Vivo (في العضوية الحية) وتعنى استخدام الحيوان كاملا وليس جزءا منه
ويبلغ المتوسط الزمني للمرحلة ما قبل السريرية كل ثمان سنوات ونصف تقريبا إلا في حالة العقار الحالات
محددة كالحوامل والرضع حيث تزداد الفترة الزمنية حسب نوعية الحالة.

Preclinical phase:

Goal of this phase:

Preclinical studies yield preliminary information about efficacy, toxicity, pharmacokinetic and safety.

Preclinical phase Include the following steps:

- i. **Identify target:** this means the choose of Therapeutic targets like Cell membrane receptors, ion channels - Intra- or extracellular enzymes , Proteins of signaling pathways – Nuclear receptors - Genes or gene regulatory processes
- ii. **Discover the right molecule** (potential drug) to interact with the target chosen: In the past, drug discovery was achieved through the determination of active compounds in common popular therapies (like herbal treatment). Additionally, some drugs have been discovered by accident, for example, penicillin. Today, more systematic approaches are used to identify the compounds, methods of synthesis, properties, analysis to ensure therapeutic effects. They can use sophisticated computer modeling to predict what type of molecule may work and thus to get the active compound.
- iii. **Modification of drug properties** in order to make this drug able to be used by humans.
- iv. **test the new compound in the lab** (In vitro, such as in tissue, protéine and organes) and in animal (in vivo) for safety and efficacy

Preclinical phase takes an average of 8.5 years except for specific cases like pregnancy and infants, the period depending increases.

B. المرحلة السريرية : Clinical studies

وتقسم بدورها إلى عدة أطوار:

i. الطور الأول:

- يشمل مجموعة من التجارب الأولى على مجموعة صغيرة من البشر ما بين (20-80) متطوعاً غير مريض.
- تركز هذه المرحلة على مأمونية الدواء
- الهدف من هذه المرحلة هو تحديد الآثار الجانبية الرئيسية بالإضافة إلى دراسة طرائق الاستقلاب والاطراح
- يدوم الطور الأول من المرحلة السريرية حوالي السنة
- عادة ما يجتاز حوالي 70% من الأدوية هذا الطور

Phase 1:

- Typically involves 20-80 healthy volunteers
- Emphasis is on drug safety
- Goal is to identify major side effects, additionally, study of metabolism and routes of excretion
- Lasts about 1 year
- About 70% of drugs will pass this phase

ii. الطور الثاني:

- تجري على مجموعة أكبر من المتطوعين المرضى يقدر بـ (100 – 300) مريض
- يركز الطور الثاني من المرحلة السريرية على فعالية الدواء
- يتم مقارنة المرضى الذين يتلقون هذا الدواء مع مرضى آخرين يتلقون الدواء الغفل **placebo** أو دواء آخر
- تدوم الطور الثاني من المرحلة السريرية حوالي سنتين
- عادة ما حوالي 33% من الأدوية المختبرة هذا الطور

Phase 2:

- Typically involves 100-300 individuals who have the target disease
- Emphasis is on effectiveness
- Patients receiving the drug are compared to similar patients receiving a placebo or another drug
- Lasts about 2 years
- About 33% of drugs will pass this phase

iii. الطور الثالث:

- تجري تجارب الطور الثالث من المرحلة السريرية على مجموعة أكبر من المرضى (1000 – 3000) وفي عدة مراكز وعده دول مختلفة
- تعتبر نتائج هذه المرحلة هي العامل المؤكد لمدى مأمونية وفعالية هذا الدواء وذلك بالمقارنة مع أفضل العلاجات الحالية ومن خلال تطبيقها على اشخاص في بلدان مختلفة
- تدوم 3 سنوات
- 25-30% من الأدوية تجتاز هذا الطور
- بسبب حجم المرحلة ومدتها الطويلة التي تستغرقها، تعتبر هذه المرحلة من أكثر المراحل تكلفة، وهي صعبة في تصميمها وإدارتها خاصة في علاجات الأمراض المزمنة.

Phase 3

- Typically involves 1000-3000 patients in several countries
- Emphasis is on safety and effectiveness in comparison to other drugs
- Investigates through well-controlled studies different populations and different dosages as well as uses new drug in combination with other drugs
- Lasts about 3 years
- 25-30% of drugs will pass this phase
- Due to the volume of the phase and the long period, this phase is very expensive. It is difficult in planning and controlling, especially in chronic diseases.

بعد ذلك تتم مراجعة كل النتائج التي تم الحصول عليها في المراحل الثلاثة من الدراسة السريرية ويتم المصادقة على هذا الدواء وتسويقه أو يتم رفضه.

بعد ان يتم تسويق الدواء تبدأ الطور 4 أو مرحلة المراقبة الدوائية في السوق (المرحلة ما بعد المصادقة) والغاية من هذه المرحلة هي:

تأكيد أمان الدواء وتسجيل أي آثار جانبية نادرة ومدى تكرارها هذه الآثار الجانبية على جماعات بشرية أكبر بكثير وفترات زمنية أطول من قبل مقارنة بالمراحل السابقة، كما تشمل هذه المرحلة تحليل الفعالية بالنسبة إلى الكلفة.

After phase 3 of clinical studies all results are collected and reviewed, and then the drug is approved or refused. After the approval of the new drug, **Phase 4 or Post-market surveillance of the drug** begins. The objective of this phase is:

- To continually assess the safety of the drug
- May include incidence and severity of rare adverse reactions, cost-effectiveness analyses, comparative trials, and quality of life studies

5- تعاريف اضافية:

A. دراسات ما قبل الصياغة : Preformulation

تبدأ دراسات ما قبل الصياغة عندما يثبت جزء فعالية دوائية كافية عند نموذج حيواني. مجموعة من الدراسات التي تركز على الخصائص الفيزيائية والكيميائية لمادة دوائية جديدة والتي يمكن أن تؤثر على كفاءة الدواء وعلى تطوير الشكل الصيدلاني. توفر هذه الدراسات معلومات هامة لتصميم الصياغة أو يكون كداعم لإحداث تعديلات في بنية المركب الجديد.

Preformulation starts when a newly synthesized drug shows sufficient pharmacological action in animal model to warrant evaluation in man. It should focus on those physicochemical properties of the new compound that could affect drug performance and development of dosage form. It provides a rationale for formulation design or support the need for molecular modification. If deficiency is detected, then it should be decided on the molecular modification that would most likely improve the drugs properties.

• الهدف من هذه المرحلة:

تطوير شكل صيدلاني أنيق elegant, ثابت stable, فعال effective, وآمن safe من خلال تحديد الخصائص الفيزيائية والكيميائية للمواد الدوائية الجديدة

• الخصائص التي يتم درستها:

- الانحلالية drug solubility
- معامل التوزع partition coefficient
- معدل التحرر dissolution rate
- polymorphic forms
- الثباتية stability

B. الصياغة الصيدلانية : Pharmaceutical formulation

هي العملية التي يتم خلالها اختيار السواغات، عمليات التصنيع، تقييم الصياغة باستخدام اختبارات فيزيائية وكميائية وصيدلانية.

Formulating consists in selecting the excipients, the manufacturing process, and evaluating the formulations obtained using physicochemical and pharmacotechnical tests