

https://manara.edu.sy/

 القوائم الوصلية:

1 #include <iostream>

2

3 using namespace std;

4

 تعريف العقدة في القائمة الوصلية على شكل عقدة:

5 struct Node {

6 int data;

7 Node* next;

8 };

9

 تابع تهيئة العقدة:

10 // only for the 1st Node

11 void initNode(struct Node *head,int n){

12 head->data = n;

13 head->next =NULL;

14 }

15

 اضافة العقدة الى القائمة الوصلية:

16 // apending

17 void addNode(struct Node *head, int n) {

18 Node *newNode = new Node;

19 newNode->data = n;

20 newNode->next = NULL; 21

22 Node *cur = head;

23 while(cur) {

24 if(cur->next == NULL) {

25 cur->next = newNode;

26 return;

https://manara.edu.sy/

https://manara.edu.sy/

27 }

28 cur = cur->next; 29 }

30 }

31

 حشر عقدة في بداية القائمة الوصلية:

32 void insertFront(struct Node **head, int n) {

33 Node *newNode = new Node;

34 newNode->data = n;

35 newNode->next = *head;

36 *head = newNode; 37 }

38

 تابع البحث عن عقدة ويقوم بإعادة مؤشر إلى العقدة:

39 struct Node *searchNode(struct Node *head, int n) {

40 Node *cur = head;

41 while(cur) {

42 if(cur->data == n) return cur;

43 cur = cur->next;

44 }

45 cout << "No Node " << n << " in list.\n";

46 }

47

 تابع حذف عقدة:

48 bool deleteNode(struct Node **head, Node *ptrDel) {

49 Node *cur = *head;

50 if(ptrDel == *head) {

51 *head = cur->next;

52 delete ptrDel;

53 return true;

54 }

55

56 while(cur) {

https://manara.edu.sy/

https://manara.edu.sy/

57 if(cur->next == ptrDel) {

58 cur->next = ptrDel->next;

59 delete ptrDel;

60 return true;

61 }

62 cur = cur->next; 63 }

64 return false;

65 }

66

 تابع يقوم بعكس عقدة:

67 /* reverse the list */

68 struct Node* reverse(struct Node** head) 69 {

70 Node *parent = *head;

71 Node *me = parent->next;

72 Node *child = me->next; 73

74 /* make parent as tail */

75 parent->next = NULL;

76 while(child) {

77 me->next = parent;

78 parent = me;

79 me = child;

80 child = child->next; 81 }

82 me->next = parent;

83 *head = me;

84 return *head;

85 }

86

 تابع نسخ السلسلة الوصلية:

87 /* Creating a copy of a linked list */

88 void copyLinkedList(struct Node *node, struct Node **pNew)

https://manara.edu.sy/

https://manara.edu.sy/

89 {

90 if(node != NULL) {

91 *pNew = new Node;

92 (*pNew)->data = node->data;

93 (*pNew)->next = NULL;

94 copyLinkedList(node->next, &((*pNew)->next));

95 }

96 }

97

 سلسلتين وصليتين:تابع مقارنة

98 /* Compare two linked list */

99 /* return value: same(1), different(0) */

100 int compareLinkedList(struct Node *node1, struct Node *node2)

101 {

102 static int flag; 103

104 /* both lists are NULL */

105 if(node1 == NULL && node2 == NULL) {

106 flag = 1;

107 }

108 else {

109 if(node1 == NULL || node2 == NULL)

110 flag = 0;

111 else if(node1->data != node2->data)

112 flag = 0;

113 else

114 compareLinkedList(node1->next, node2->next);

115 }

116

117 return flag;

118 }

119

https://manara.edu.sy/

https://manara.edu.sy/

 بع حذف كامل السلسلة الوصلية:تا

120 void deleteLinkedList(struct Node **node)

121 {

122 struct Node *tmpNode;

123 while(*node) {

124 tmpNode = *node;

125 *node = tmpNode->next;

126 delete tmpNode;

127 }

128 }

129

 المؤشر إلى رأس السلسلة:تابع طباعةالسلسلة الوصلية بدون تحريك

130 void display(struct Node *head) {

131 Node *list = head;

132 while(list) {

133 cout << list->data << " ";

134 list = list->next;

135 }

136 cout << endl;

137 cout << endl;

138 }

139

 التابع الرئيسي:

140 int main()

141 {

142 struct Node *newHead;

143 struct Node *head = new Node; 144

145 initNode(head,10);

146 display(head);

147

148 addNode(head,20);

https://manara.edu.sy/

https://manara.edu.sy/

149 display(head);

150

151 addNode(head,30);

152 display(head);

153

154 addNode(head,35);

155 display(head);

156

157 addNode(head,40);

158 display(head);

159

160 insertFront(&head,5);

161 display(head);

162

163 int numDel = 5;

164 Node *ptrDelete = searchNode(head,numDel);

165 if(deleteNode(&head,ptrDelete))

166 cout << "Node "<< numDel << " deleted!\n";

167 display(head);

168

 169 cout << "The list is reversed\n";

170 reverse(&head);

171 display(head);

172

173 cout << "The list is copied\n";

174 copyLinkedList(head,&newHead);

175 display(newHead);

176

177 cout << "Comparing the two lists...\n";

178 cout << "Are the two lists same?\n";

179 if(compareLinkedList(head,newHead))

https://manara.edu.sy/

https://manara.edu.sy/

180 cout << "Yes, they are same!\n";

181 else

182 cout << "No, they are different!\n";

183 cout << endl;

184

185 numDel = 35;

186 ptrDelete = searchNode(newHead,numDel);

187 if(deleteNode(&newHead,ptrDelete)) {

188 cout << "Node "<< numDel << " deleted!\n";

189 cout << "The new list after the delete is\n";

190 display(newHead);

191 }

192 cout << "Comparing the two lists again...\n";

193 cout << "Are the two lists same?\n";

194 if(compareLinkedList(head,newHead))

195 cout << "Yes, they are same!\n";

196 else

197 cout << "No, they are different!\n";

198

199 cout << endl;

200 cout << "Deleting the copied list\n";

201 deleteLinkedList(&newHead);

202 display(newHead);

203 return 0;

204 }

205

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

