
Robot and Smart Systems
Manara University

Fall 2022
Instructor: Iyad Hatem

Data Structures and Algorithms in

C++
Class Meeting

2

Course Objectives

 The primary goal of this class is to learn a

useful subset of C++ programming language

and fundamental data structures and algorithms

expressed in C++.

 You will learn best practices for developing

reliable software.

 You will acquire software development skills

that are valued by employers.

3

Not Course Objectives

 Complete knowledge of C++

◼ C++ is a huge, complex language!

◼ The class will hit the important features.

◼ You can learn the rest by yourself from

online tutorials or the textbooks.

◼ We will briefly touch the new features

of C++ 11 and 14.

 Advanced data structures and algorithms

 Advanced algorithm analysis

4

Required Textbooks

 Problem Solving with C++, 10th edition

◼ Author: Walter Savitch

◼ Publisher: Pearson, 2017

◼ ISBN: 978-0134448282

 Data Structures Using C++, 2nd edition

◼ Author: D.S. Malik

◼ Publisher: Cengage Learning, 2010

◼ ISBN: 978-0324782011

You are responsible for doing the chapter readings

before each class, as indicated in the class schedule.

5

Software to Install

 Install an integrated development environment

(IDE) for C++ development on the Mac or Linux

platform, such as:

◼ Eclipse CDT (C/C++ Development Tooling):

https://eclipse.org/cdt/

 You can choose your favorite IDE.

https://eclipse.org/cdt/

6

Software to Install, cont’d

7

C++ on the Mac and Linux Platforms

 GNU C++ is usually pre-installed on the Mac

and Linux platforms.

 No further action required!

8

C++ on Windows 10

 The Windows platform has proven to be

problematic for this class.

◼ Difficult to install the Cygwin environment correctly.

◼ Difficult to install C++ libraries successfully.

◼ Serious compatibility challenges.

 Avoid using Microsoft’s Visual C++ on Windows

for this class.

◼ You run the risk of writing programs

that will not port to other platforms.

9

C++ on Windows 10, cont’d

 Install the Windows Subsystem for Linux (WSL).

◼ See https://docs.microsoft.com/en-

us/windows/wsl/install-win10

 Recommended: Install the Ubuntu distribution.

◼ See https://www.microsoft.com/en-

us/p/ubuntu/9nblggh4msv6?activetab=pivot:overview

tab

We will not provide support for Windows.

If you insist on running Windows,

you are on your own!

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6?activetab=pivot:overviewtab

10

Useful Tutorials

 “Install Ubuntu on Windows 10 and on

VirtualBox”

◼ http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.p

df

 “Configure Ubuntu for Software Development”

◼ http://www.cs.sjsu.edu/~mak/tutorials/ConfigureUbun

tu.pdf

 “Install Eclipse for Java and C++ Development”

◼ http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.p

df

http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.pdf
http://www.cs.sjsu.edu/~mak/tutorials/ConfigureUbuntu.pdf
http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.pdf

11

C++ 2011 Standard

 We will use the 2011 standard version of C++.

 You must set this standard explicitly for your

project in Eclipse or your chosen IDE.

 On the command line:

g++ foo.cpp --std=c++11 –o foo

Two hyphens!

12

Set the C++ 2011 Standard in Eclipse

 Right-click on your project in the project list

at the left side of the window.

 Select “Properties” from

the drop-down context menu.

 In the left side of the properties window,

select “C/C++ Build” ➔ “Settings”.

 In the Settings dialog,

select “GCC C++ Compiler” ➔ “Dialect”.

 For “Language standard” select “ISO C++ 11”.

 Click the “Apply” button, answer “Yes”,

and then click the “OK” button.

Remember to do

all these steps

for every C++ project

in Eclipse.

13

Assignments

 You will get lots of programming practice!

◼ A main programming assignment each week.

◼ Several small practice programs that emphasize

specific skill needed to solve the main assignment.

 We will use the online CodeCheck system

which will automatically check your output

against a master.

◼ You will be provided the URL for each assignment.

◼ You can submit as many times as necessary

to get satisfactory output.

14

Assignments, cont’d

 Assignments will be due the following week,

before the next lecture.

 Solutions will be discussed at the next lecture.

 Assignments will not be accepted after solutions

have been discussed in class.

◼ Late assignments will receive a 0 score.

15

Individual Work

 You may study together.

 You may discuss the assignments together.

 But whatever you turn in must be your individual

work.

16

Academic Integrity

 Copying another student’s work or sharing your

work is a violation of academic integrity.

 Violations will result in harsh penalties

by the university.

◼ Academic probation.

◼ Disqualified for TA positions in the university.

◼ Lose internship and OPT sponsorship

at local companies.

 Instructors are obligated to report violations.

17

Moss

 Department policy is for programming

assignments to be run through Stanford

University’s Moss application.

◼ Measure of software similarity

◼ Detects programming plagiarism

◼ http://theory.stanford.edu/~aiken/moss/

 Moss is not fooled by

◼ Renaming variables and functions

◼ Reformatting code

◼ Re-ordering functions
Example Moss output:

http://www.cs.sjsu.edu/~mak/Moss/

http://theory.stanford.edu/~aiken/moss/
http://www.cs.sjsu.edu/~mak/Moss/

18

Exams

 The midterm and final examinations will be

open book and conducted online.

 Instant messaging, e-mails, texting, tweeting,

file sharing, or any other forms of

communication with anyone else during the

exams violates academic integrity.

19

Exams, cont’d

 There can be no make-up midterm examination

unless there is a documented medical

emergency.

 Make-up final examinations are available

only under conditions dictated by University

regulations.

20

Final Class Grade

 65% assignments

 15% midterm

 20% final exam

 The class is graded CR/NC.
◼ Students who have a weighted score above

the passing threshold at the end of the semester will
receive the CR grade.

 We expect least 80% of students will pass.
◼ In some past semesters when I’ve taught this class,

the pass rate has been higher than 95% in the past.

21

Take Roll

22

Fast Pace!

 This class will move forward at a fast pace.

 Lectures will consist of:

◼ New PowerPoint slides by the instructor

◼ PowerPoint slides from the textbook publishers

◼ Program examples and live demos

◼ Questions, answers, and discussion

 Lecture materials will be posted to the class

webpage: http://www.cs.sjsu.edu/~mak/CMPE180A/index.html

http://www.cs.sjsu.edu/~mak/CMPE180A/index.html

23

Discussion Forum

 Please use the Discussions feature of Canvas.

◼ Ask questions

◼ Answer questions

◼ Chat

 If you have a question, please ask it in the

Discussions feature .

◼ Others may have the same question.

◼ I’ll only have to answer the question once.

◼ Other students can provide answers before I do.

24

What is C++

 An object-oriented programming (OOP)

language.

◼ Supports encapsulation, inheritance, polymorphism.

◼ Based on the C language with added OOP features.

 A powerful but complex language!

◼ Lots of features.

◼ Somewhat arcane syntax.

◼ Easy to make programming errors.

◼ Things happen automatically at run time

that you may not expect.

25

A Useful Subset of C++

 We will only learn a useful subset of C++.

◼ Very few people (not including your instructor)

know the entire language.

 Among professional C++ programmers,

everybody knows a different subset,

depending on experience, training,

and application domains.

26

What Happened?

 We may have to figure out together

what happened when …

◼ You’ve accidentally stumbled onto

an obscure language feature.

◼ Your program runs slower than expected.

◼ Your program mysteriously crashes.

 Your program may appear to run fine on your

machine but then crash in CodeCheck.

◼ It’s usually because your program attempted

to access protected memory via a bad pointer.

27

Our First C++ Program

 The infamous “Hello, world!” program.

 Compiled and run on the command line:

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, world!" << endl;

return 0;

}

helloworld.cpp

~/programs/HelloWorld: g++ helloworld.cpp --std=c++11 -o helloworld

~/programs/HelloWorld: ./helloworld

Hello, world!

28

Algorithms and Program Design

 Display 1.4

◼ Compiling and Running a C++ Program

 Display 1.5

◼ Preparing a C++ Program for Running

 Display 1.7

◼ Program Design Process

Savitch_ch_01.ppt: slides 57– 60

29

Sample C++ Program: Pods and Peas

 “A Sample C++ Program”

 Display 1.8

◼ Pods and peas program

Savitch_ch_01.ppt: slides 34 – 44

Savitch_ch_01.ppt: slide 61

30

Identifiers and Variables

 Identifiers are names.

 Variables represent values that can change.

◼ Variables have names (variable identifiers).

 Declare variables before you use them.

◼ A declaration tells what is the

variable’s datatype

(integer, float, double,

character, boolean, etc.).

◼ A declaration can also give an

initial value to the variable.

int n;

double ratio;

bool is_prime;

char ch;

string name;

int length = 0;

double temp = 98.6;

string name = "Frank";

31

Keywords

 Keywords are reserved by C++

and you cannot use them as identifiers.

◼ Examples: if for while

32

Assignment Statements

 At run time, be sure to initialize a variable

(give it a value) before you use it.

◼ Either initialize the variable when you declare it.

 Example:

◼ Or execute an assignment statement.

 Example:

 Do not confuse = (assignment)

with == (equality comparison).

i = 10; // assign the value of 10 to variable i

if (i == 10) // test whether or not i is equal to 10

int i = 5;

i = 10;

33

Break

34

Output Stream

 Values written by the program at run time.

 Standard output stream: cout

◼ Default: the display

 Example:

◼ Insert (write) the string “x equals” followed by

the value of variable x followed by a carriage return

(endl) to the display.

cout << "x equals " << x << endl;
insertion

operator

35

Formatting Real Numbers for Output

 Call methods of cout to format real numbers.

 cout.setf(ios::fixed);

◼ Use fixed-point notation (not scientific).

 cout.precision(2);

◼ How many places after the decimal point (e.g., 2).

◼ You can also write:

#include <iostream>

#include <iomanip>

...

cout << fixed << setprecision(16);

36

Input Stream

 Data read by the program at run time.

 Standard input stream: cin

◼ Default: the keyboard

 Example:

◼ Extract (read) the next two values from the keyboard
and assign the values to x and y, respectively.

cin >> x >> y; extraction operator

37

Input From cin

◼ Read values into multiple variables.

◼ The input values should be separated

by one or more spaces.

 The values are not read

until you press the return key.

◼ Therefore, you can backspace

and make corrections.

cin >> v1 >> v2 >> v3;

38

#include and using namespace

 #include <iostream>

◼ Include the definitions of cin and cout

in your program.

 using namespace std;

◼ Make the standard namespace std

available to the program.

◼ The names cin and cout and other important

names reside in the standard namespace.

39

Some Basic Data Types

 A datatype (also: data type) determines

◼ what kind of data values

◼ what operations are allowed

 Data type int for integer values

without decimal points.

◼ Examples: 0 2 45 -64

 Data type short for small integer values.

 Data type long for very large integer values.

40

Some Basic Data Types, cont’d

 Data type double for real numbers.

◼ Fixed-point notation: 34.1 23.0034 -1.0 89.9

◼ Scientific notation: 3.67e17 5.89E-6 -7.23e+12

 Data type float for less precision

and smaller magnitude.

 Data type char for individual characters.

◼ Examples: 'a' 'Z'

◼ Use only single quotes for character constants

in a program.

41

Some Basic Data Types, cont’d

 Data type bool for the Boolean values

true and false.

 The Boolean value false is stored as

the integer 0.

 The Boolean value true is stored as

the integer 1.

42

cin Skips Input Blanks

 The statements

when given the input
will set ch1 to 'A' and ch2 to 'B'.

char ch1, ch2;

cin >> ch1 >> ch2;

A B

cin uses blanks and line feeds

to separate input data values,

but otherwise it skips the

blanks and line feeds.

43

String Type

 #include <string>

◼ Required if your program uses strings.

 Enclose string values with double quotes

in your program.

◼ Example: "Hello, world!"

 To input a string from cin that includes spaces,

all in one line: string str;

getline(cin, str);

44

Type Compatibilities and Conversions

 int pi = 3.14;

◼ double→ int is invalid. You cannot set

a double value into an int variable .

 Some valid conversions:

◼ int→ double

◼ char→ int

◼ int→ char

◼ bool→ int

◼ int→ bool Any nonzero integer value is stored as true.

Zero is stored as false.

45

Arithmetic

 Arithmetic operators: + - * / %

 Integer / result if both operands are integer.

◼ Quotient only.

◼ Example: The value of 11/3 is 3.

 Use the modulo operator % to get a remainder.

◼ Example: The value of 11%3 is 2.

 Double / result (includes fractional part)

if either or both operands are double.

46

Operator Shorthand

 n += 5 shorthand for n = n + 5

 n -= 5 shorthand for n = n - 5

 n *= 5 shorthand for n = n*5

 n /= 5 shorthand for n = n/5

 n %= 5 shorthand for n = n%5

47

The if Statement

 Example if statement:

 Example if else statement:

if (n <= 0)

{

cout << "Please enter a positive number." << endl;

}

if (hours > 40)

{

gross_pay = rate*40 + 1.5*rate*(hours - 40);

}

else

{

gross_pay = rate*hours;

}

48

while Loops

 Example while loop:

 Example do while loop:

while (count_down > 0)

{

cout << "Hello ";

count_down = count_down - 1;

}

do

{

cout << "Hello ";

count_down = count_down - 1;

} while (count_down > 0)

49

Named Constants

 It’s good programming practice

to give names to constants:

 Easier for humans to read the program.

 Easier to modify the program.

 Convention: Use ALL_CAPS

with underscores if necessary

for the names of constants.

const double PI = 3.1415626;

50

Boolean Operators

 Relational operators: == != < <= > >=

 And: &&

 Or: ||

 Not: !

 Short-circuit operation: p && q

◼ q is not evaluated if p is false

 Short-circuit operation: p || q

◼ q is not evaluated if p is true

51

Precedence Rules

Savitch_ch_03.ppt: slides 8-13

52

Enumeration Types

 A data type with values defined by
a list of constants of type int

◼ Examples:

enum Direction {NORTH, SOUTH, EAST, WEST};

enum MonthLength{JAN_LENGTH = 31,

FEB_LENGTH = 28,

MAR_LENGTH = 31,

…

DEC_LENGTH = 31};

53

Nested if Statements

 Example:

if (net_income <= 15000)

{

tax_bill = 0;

}

else if ((net_income > 15000) && (net_income <= 25000))

{

tax_bill = (0.05*(net_income - 15000));

}

else // net_income > $25,000

{

five_percent_tax = 0.05*10000;

ten_percent_tax = 0.10*(net_income - 25000);

tax_bill = (five_percent_tax + ten_percent_tax);

}

54

The switch Statement

 Use a switch statement instead of nested if

statements to compare a single integral value

for equality.

◼ Note the need
for the break

statements.

◼ Note the
default case

at the bottom.

int digit;

...

switch(digit)

{

case 1: digit_name = "one"; break;

case 2: digit_name = "two"; break;

case 3: digit_name = "three"; break;

case 4: digit_name = "four"; break;

case 5: digit_name = "five"; break;

case 6: digit_name = "six"; break;

case 7: digit_name = "seven"; break;

case 8: digit_name = "eight"; break;

case 9: digit_name = "nine"; break;

default: digit_name = ""; break;

}

55

The Increment and Decrement Operators

 ++n

◼ Increase the value of n by 1.

◼ Use the increased value.

 n++

◼ Increase the value of n by 1.

◼ Use the value before the increase.

56

The Increment and Decrement Operators, cont’d

 --n

◼ Decrease the value of n by 1.

◼ Use the decreased value.

 n--

◼ Decrease the value of n by 1.

◼ Use the value before the decrease.

57

for Loops

 Example:

int sum = 0;

for (int n = 1; n <= 10; n++)

{

sum = sum + n;

}

cout << "The sum of the numbers 1 to 10 is "

<< sum << endl;

Note that variable n

is local to the loop body.

58

for Loops, cont’d

 The for loop uses the same components as

the while loop, but in a more compact form.

Initialization Action

Boolean Expression

Update Action

for (n = 1; n <= 10; n++)

59

The break Statement

 Use the break statement to exit a loop

before “normal” termination.

 Do not overuse!

◼ Well-designed loops should end normally.

 This use of break in a for statement

is different from the necessary use of break

in a switch statement.

60

Nested Loops

 If you have an “outer loop” that contains an

“inner loop”, then for each iteration (execution)
of the outer loop, the inner loop goes through

all of its iterations.

 This concept extends to more than just one loop

inside another.

◼ Loops can nest deeply, although usually

there are no more than three loops.

 Nested loops are a very common in programs.

61

Nested Loops, cont’d

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

for (int i = 1; i <=2; i++)

{

for (int j = 9; j <= 12; j++)

{

cout << "i = " << i

<< ", j = " << j << endl;

}

}

return 0;

}

i = 1, j = 9

i = 1, j = 10

i = 1, j = 11

i = 1, j = 12

i = 2, j = 9

i = 2, j = 10

i = 2, j = 11

i = 2, j = 12

nestedloop.cpp

62

Loop Considerations

 Choosing the right kind of loop to use

 Designing loops

 How to control a loop

 How to exit from a loop

 Nested loops

 Debugging loops

Savitch: Chapter 3

