[y

deola
o)liaJl

Data Structures and Algorithms

in C++
Class Meeting

Robot and Smart Systems
Manara University

Fall 2022
Instructor: lyad Hatem




Vi

doola
dliadl
* Some of you may have discovered this while programming the solution to
Assignment #1.
The C++ Division Operator
* If both operands of the / operator are integer constants or variables, then
the result will be integer.

* Any fractional amount is truncated (not rounded).
* Examples: 7/3=>» 2 and 1/2=2 0

* |f one or both operands are double constants
or variables, then the result will be double.

* Examples: 7/3.0=>2.333... and 1.0/2.0= 0.5




12 LEE

= n[(2VZ+VIO)(3 4 VT0)]

Gth_clJ[
Assignment #1: Sample Solution

void Ramanujan 0()

{

T =

double constl
double const2
double const3

12/sqrt(190) ;
2*sqrt(2) + sqgrt(10);
3 + sqrt(10);

double pi = constl*log(const2*const3) ;
cout << " Estimate: " << pi << endl;

* The built-in square root sqrt and the natural logarithm 1og functions
are from the cmath library:

#include <cmath>




Vi

4 _ 1 N (=D"Gn)! 1123 + 214600 duls
m 882 : (4"n!)4 gg822n )lio]
n=

Assignment #1: Sample Solution, contd
* What does the (-1)” factor do?

* Whenever nis odd, the factor equals -1.

* Example: ('1)3 — ('l)('l)('l) =-1

* Whenever nis even, the factor equals +1.

* Example: ('1)4 — ('1)('1)('1)('1) =+]

* Therefore, the factor alternates between
adding and subtracting the term it multiplies.




4 1 ~ (=1)"(4n)! 1123 + 21460n [A
— = deola
mo 8824 (4nnD)? 8822% 414l

n= s T

Assignment #1: Sample Solution, contd

* |t is inefficient to use the built-in power function for this purpose:

* Use a Boolean variable instead that
alternates between true and false.

pOW(—l ’ n)

* Copying a mathematical formula directly
can lead to inefficient or erroneous code.

e A formula that is not designed for computation can accumulate roundoff errors
when it is used inside of a loop. It can also have overflow errors.

See: https://www.amazon.com/Java-Number-Cruncher-Programmers-Numerical/dp/0130460419/ref=sr 1 1?dchild=1&keywords=java+number+cruncher&qid=1598936278&s=books&sr=1-1



https://www.amazon.com/Java-Number-Cruncher-Programmers-Numerical/dp/0130460419/ref=sr_1_1?dchild=1&keywords=java+number+cruncher&qid=1598936278&s=books&sr=1-1

- deola

T (47nl) 8822" i,

4 1 i (—D™(4n)! 1123 + 21460n[Z‘/
882
n=0

Assignment #1: Sample Solution, contd

void Ramanujan 2()

{

cout << " Iteration Estimate" << endl;

double four over pi;
double factor0 = ((double) 1)/882.0;
bool negate = false;

double sum = 0.0;
double prev
double diff

0.0;
0.0;

int n = 0;




4 1 O (-D™4n)! 1123 + 21460n [2
m  8824. (4"nl)* 8822n

n=0 ﬂ.‘i’.ﬂu

Gliall

Assignment #1: Sample Solution, contd

do

{
double factorl = factorial (4*n)/pow((pow(4.0, n)*factorial(n)), 4);
double factor2 = (1123 + 21460*n) /pow(882.0, 2*n);

if (negate) factorl = -factorl;
sum += factorl*factor2;

four over pi = factorO*sum;
cout << setw(ll) << n+l <K " " 4.0/four_ove:_pi << endl;

diff = abs(prev - four over pi);
prev = four over pi;
negate = !'negate;
n++;
} while ((diff > TOLERANCE) && (n <= MAX ITERATIONS)) ;




[y

deola
o)liaJl

1 = (—1)™(6n)! 13591409 + 545140134n
T . (3n)!(n!)3
n:

(6403203)(’”%)

Assignment #1: Sample Solution, contd

void Chudnovsky ()
{

double one_pver_pi;
double sum = 0.0;

double prev = 0.0;
double diff = 0.0;
bool negate = false;

int n = 0;




Vi

dools

ool
1 Z (=1)™(6n)! 13591409 + 545140134n
P I (n1)3 1
& = (Gl (6403203)("*2)

Assignment H1: Sample Solution, contd

do

{
double factorl
double factor2

= factorial (6*n)/ (factorial (3*n) *pow (factorial(n), 3));
= (13591409 + 545140134*n) /pow (640320, 3*n + 1.5);

if (negate) factorl = -factorl;

sum += factorl*factor2;

one over pi = 12*sum;
cout << setw(ll) <K n+l1 <K " " 1.0/one_pver_pi << endl;

diff abs (prev - one_over pi);
prev one_over pi;
negate = 'negate;
n++;
} while ((diff > TOLERANCE) && (n <= MAX ITERATIONS)) ;



deola

gyliall
: " el
arctan x = x — — see s
3 5 7 4

Vi

1

= 4arctan— — arctan ———
arc ar15 arc aleﬁgg

Assignment #1: Sample Solution, contd

double arctangent (double x)

{

double arctan = x;

bool addsub = false;
double numerator = x;
double x squared = x*x;
double term;

int odd = 3;

do
{

numerator *= x squared;
term = numerator/odd;

if (addsub) arctan += term;

else arctan -= term;
odd += 2;
addsub = !'addsub;

} while ((term > TOLERANCE) && (odd <= MAX ITERATIONS)) ;

return arctan;




[y

deola
o)liaJl

Predefined Functions

* C++ includes predefined functions.

* AKA built-in functions
* Example: Math function sqrt

* Predefined functions are stored in libraries.

* Your program will need to include the appropriate library header files to
enable the compiler to recognize the names of the predefined functions.

* Example: #include <cmath>
in order to use predefined math functions like sqrt




A%

Savitch_ch_04.ppt: slides 8 — 12, 72

Some Predefined Functions

Prede

Description Type of Type of Example Value Library
Arguments Value Header
Returned

sqrt square root double double sqrt(4.0) 2.0 cmath

pow powers double double pow(2.0,3.0) 8.0 cmath

abs absolute value 7nt int abs(-7) 7 cstdlib
for int abs(7) 7

Tabs absolute value  Tong Tong 1abs(-70000) 70000 cstdlib
for Tong Tabs (70000) 70000

fabs absolute value doubTe double fabs(-7.5) 7.5 cmath
for double fabs(7.5) 7.5

ceil ceiling double double ceil(3.2) 4.0 cmath
(round up) ceil(3.9) 4.0

floor floor double double floor(3.2) 3.0 cmath
(round down) floor(3.9) 3.0




Vi

deol
6)lial
* To generate (pseudo-) random numbers
using the predefined functions, first include

RatigonheMerfidsers

#include <cstdlib>
* “Seed” the random #include <ctime>

* If you don’t seed, you’ll always get the same “random” sequence (which may be

useful for debugging). srand (time (0)) ;




[y

deola
o)liaJl

Random Numbers. contd

rand () ;
e Each subsequent call returns a “random” number 2 0 and <
RAND MAX.
* RAND MAX s library-dependent but is guaranteed to be at least 32,767.

* Use + and % to scale to a desired number range.
* Example: Each execution of the expression

rand()%6 + 1
returns a random number
with the value 1, 2, 3,4, 5, or 6.




V)
deols
Ofel
Type Casting
* Suppose integer variables i and j are initialized to 5 and 2, respectively.
* What is the value of the division 1/ ?
* What if we wanted to have a quotient

of type double?
* We want to keep the fraction.




Vi

deola
o)liaJl

Type Casting, contd

* One way is to convert one of the operands
(say i) to double.

* Then the quotient will be type double.
double quotient = static cast<double>(i)/j;

* Why won’t the following work?

double quotient = static cast<double>(i/j);




Vi

doola
" . ouad .
* In addition to using the predefinedfunctions, you can write your own
functions.

Programmer-Defined Functions

* Programmer-defined functions are critical
for good program design.

* In your C++ program, you can call a programmer-defined function only
after the function has been declared or defined.




[y

deola
o)liaJl

Function Declarations

A function declaration specifies:
* The function name.

* The number, order, and data types
of its formal parameters.

* The data type of its return value.

* Example:

double total cost(double unit cost, int count);




Vi

daola
8)liadl

Function Definitions, contd
» After you've declared a function,
you must define it.

* Write the code that is executed
whenever the function is called.

* A return statement terminates execution
of the function and returns a value to the caller.

* Example:

double total cost(double unit cost, int count)

{

double total = count*unit_cost;
return total;




Vi

deols

§)liall

* Call a function that you wrote justas
you would call a predefined function.

Function Calls

* Example:

int how many;
double how much;
double spent;

how many = 5;
how much = 29.99;
spent = total cost(how much, how many) ;




Vi

daola
8)liadl

Void Functions
* A void function performs some task
but does not return a value.

* Therefore, its return statement terminates the function execution
but does not include a value.

* A return statement is not necessary for a void function if the function
terminates “naturally”
after it finishes executing the last statement.

_ void print TF (bool b)
* Example void { -

function definition: if (b) cout << "T";

else cout << "F";




[y

deola
o)liaJl

Void Functions, contd

* A call to a void function cannot be part of an expression, since the
function doesn’t return
a value.

* Instead, call a void function as a statement

by itself. bool flag = true;

print TF(flag) ;
* Example: =




Vi

daola
8)liadl

Coding Convention with Functions

* First declare all your functions.

* Document each declaration with a comment that describes:
* What the function does.
* What is each function parameter.
 What is the return value.

e Code the main function.

 Define the functions.
* Don’t repeat the declaration’s comment.
* Only document each function’s internal operations.




#include <iostream>
using namespace std;

/**

Vi

daol Coding
Convention with
Functions, contd

* Add two integers and return their sum.

* @param nl the first integer
* @param n2 the second integer
* @return their sum.

*/

int make sum(int nl, int n2);

[ **
* Print an integer value;
* @param n the value to print.

*/

void print(int n);

The declarations tell you what

the overall structure of the

the functions will do and provide

14

program without all the details

int main ()

{
inti=5, J=717;
int sum = make sum(i, Jj);
print (sum) ;

}

int make sum(int nl, int n2)

{

return nl + n2; // return their sum

}

Function definitions.

void print(int n)
{
cout << "The value is " << n << endl;

}




Break

nnnnnnnnnnnn




Vi

deola
o)liaJl

Top-Down Design

* Top-down design is an important
software engineering principle.

e Start with the topmost subproblem
of a programming problem.

* Write a function for solving the topmost subproblem.

* Break each subproblem into smaller subproblems.
* Write a function to solve each subproblem.
* This process is called stepwise refinement.




Vi

deola
o)liaJl

Top-Down Design, contd

* The result is a hierarchical decomposition
of the problem.

* AKA functional decomposition




Vi

deola
o)liaJl

Top-Down Design Example

* Write a program that inputs from the user that are positive integer
values less than 1000.

* Translate the value into words.
* Example:
* The user enters 482

* The program writes four hundred eighty-two

* Repeat until the user enters a value < 0.




Vi

deola
o)liaJl

Top-Down Design Example, contd

* What is the topmost problem?

* Read numbers entered by the user
until the user enters a value < 0.

* Translate each number to words.

* This is a high-level description of what
the program is supposed to do.




Vi

deola
o)liaJl

Refinement 1

* Loop to read and print the numbers.

. translatorl.cpp
e Call a translate function,

but it doesn’t do anything yet.




[y

m .
8)liadl

Refinement 2

* How to translate a number into words?
* Break the number into separate digits.

* Translate the digits into words such as one, two, ..., ten, eleven, twelve, ...,
twenty, thirty, etc.

 Refine the translate function to handle
some simple cases:
* translate ones:1through9
* translate teens:11 through 19

translator2.cpp




[y

deoola
dliadl
* The translate function takes a 3-digit number and separates out the
hundreds digit.

Refinement 3
* Translate the hundreds digit.
* translate hundreds

* Do this simply by translating the hundreds digits
as we did a ones digit. Then append the word hundred.




Dy

deola
o)liaJl

Refinement 3, contd

* Translate the last two digits:
* We can already translate a teens number.

* Otherwise, break apart the two digits
into a tens digit and a ones digit.
* translateTens: 10, 20, 30, ..., 90
* We can already translate a ones digit.

translator3.cpp




Vi

deola
o)liaJl

Refinement 4

* Add a hyphen between twenty, thirty, etc.
and a ones word.

* Example: twenty-one




[y

m .
8)liadl

Refinement 5

* Break a 6-digit number into a 3-digit first part and a 3-digit second
part.

 Translate the first part and
then append the word thousand.

* Translate the second part.




Dy

dso

La

Gliall

Refinement 672 77

Number? 300010
300010 : three h

Extra space!

narea thousand

ten

* Insert commas into numbers?
* Example: 12,345




Vi

daola
6)lial
* Any variable declared inside a function is
local to that function.

Scope and Local Variables

* The scope of the variable is that function.

 The variable is not accessible
from outside the function.

e A variable with the same name declared inside another function is a different
variable.

 The same is true for any variable
declared inside the main function.




Dy

deola
o)liaJl

* You can declare variables inside of a block.

BlOCk SCOpe * A block of code is delimited by { and }.
* The variables are local to the block.
* Example:
if (x < y)
{
int 1i;




Vi

daola
8)liadl

Global Constants and Variables

* |If a constant or a variable is declared
outside of and before the main and the
function definitions, then that constant
or variable is global and accessible
by the main and any function.

* Global variables are not recommended.

* If a function modifies a global variable,
that can affect other functions.

* Such “side effects” of a function can make a program error-prone and
difficult to maintain.

e Global constants are OK.




Vi

daola
8)liadl

Overloading Function Names

* A function is characterized by both its
name and its parameters.

e A function’s signature includes the number, order, and data types of the formal
parameters.

* You can overload a function name by defining another function with the
same name but with a different signature.

* When you call a function with a shared name,
the arguments of the call determine which function you mean.




Vi

daola
8)liadl

Overloading Function Names, contd

* Example declarations:

double average (double nl, double n2);
double average (double nl, double n2, double n3);

* Example calls:

double avg2 = average(x, Vy)
double avg3 = average(x, y, z);

* Be careful with automatic type conversions of arguments when
overloading function names.

* See the Savitch text and slides.




[y

deola
o)liaJl

Pass by Value

By default, arguments to a function are
passed by value.
* AKA call by value

* A copy of the argument’s value
is passed to the function.

* Any changes that the function makes to the parameters do not affect the
calling arguments.
* Example: The faulty swap function.




[y

m .
8)liadl

Pass by Value, contd

void swap (int a, int b)

{
int temp = a;
a = Db;
b = temp;

* Why doesn’t this function do }
what was intended?

Demo




[y

m .
8)liadl

Pass by Reference

* If you want the function to be able to change the value of the caller’s
arguments, you must use pass by reference.
* AKA call by reference

* The address of the actual argument
is passed to the function.

* Example: The proper exchange function.




Dy

deola
o)liaJl

Pass by Reference, contd
void exchange (int& a, inté& b)

{

int temp = a;

22 By
b = temp;

}
* Why is this code better?

Demo




o

deola
o)liaJl

Procedural Abstraction

e Design your function such that the caller does not need to know how
you implemented it.

* The function is a “black box”.




Vi

deola
o)liaJl

Procedural Abstraction, contd

* The function’s name, its formal parameters,
and your comments should be sufficient
for the caller.

* Preconditions: What must be true when the function is called.

* Postconditions: What will be true after the function completes its
execution.




Vi

daola
8)liadl

Testing and Debugging Functions

* There are various techniques
to test and debug functions.

* You can add temporary cout statements in your functions to print the
values of local variables to help you determine what the function is
doing.

* With the Eclipse or the NetBeans IDE,
you can set breakpoints, watch variables, etc.




Vi

daola
8)liadl

assert

* Use the assert macro during development to check that a function’s
preconditions hold.
* You must first #include <cassert>
* Example: assert(y '= 0);
quotient = x/y;
* Later, when you are sure that your program is debugged and you are

going into production, you can logically remove all the asserts by
defining NDEBUG before the include:

#define NDEBUG
#include <cassert>




assert,
contd

[y

deola

#include <iostream>
assert.cpp

//#define NDEBUG
#include <cassert>

using namespace std;

/**

* Print a positive value.

* @param n the value which must be > 0.

*/

void print positive (int n);

int main ()

{
print positive(-3);
return O;

void print positive (int n)
{
assert(n > 0);
cout << "'n = " << n << endl;

Demo




Assignmet

* Behind one door is a new car.
* Behind the other two doors are goats.
e Can you pick the right door?




Vi

deola
o)liaJl

Assignment #2: Monty Hall Problem, contd

* Do a hierarchical decomposition.
* lteratively add new functionality to code that works.
* Choose good function names.
* Use parameters wisely.

* You will need to generate random numbers.

* Use the same seed value if you always want the same sequence of random
numbers for testing.

* Your final program should have
correct output and be easy to read.




