

Lecture 10

Gated SR Latch

Dr. Bassam Atieh

MANARA UNIVERSITY

Motivation

- The basic latch changes its state when the input signals change.
- ■It is hard to control when these input signals will change and thus it is hard to know when the latch may change its state.
- We want to have something like an Enable input.
- ■In this case it is called the "Clock" input because it is desirable for the state changes to be synchronized.

555 Timer As An stable Multivibrator

555 Timer As An stable Multivibrator Circuit

555 Timer As An stable Multivibrator Circuit

$$t_p = 0.7(R_A + R_B)C$$
$$t_n = 0.7R_BC$$

$$T = t_p + t_n$$

= 0.7(R_A + 2R_B)C

$$f = \frac{1}{T} = \frac{1}{0.7(R_A + 2R_B)C}$$

$$f = \frac{1.43}{(R_A + 2R_B)C}$$

MANARA UNIVERSITY

Gated SR latch with NAND gates

Characteristic Table Gated SR Latch with NAND gates

CLK	S	R	Qa-	Qa+	Qb+	state
0	X	X	X	X	X	X
1	0	0	0	0	1	R=0 S=0 LAT
1	0	0	1	1	0	
1	0	1	0	0	1	R=1 S=0 RESET
1	0	1	1	0	1	
1	1	0	0	1	0	R=0 S=1 SET
1	1	0	1	1	0	
1	1	1	0	?	?	R=1 S=1 ?
1	1	1	1	?	?	

