

Dr. Bassam Atieh

EXAMPLE 1

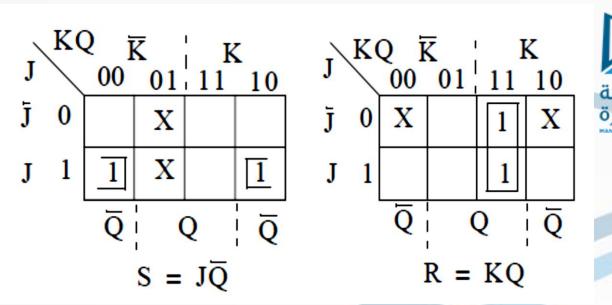
المطلوب تصميم قلاب JK flip flop باستخدام: أَمُنَارَةُ

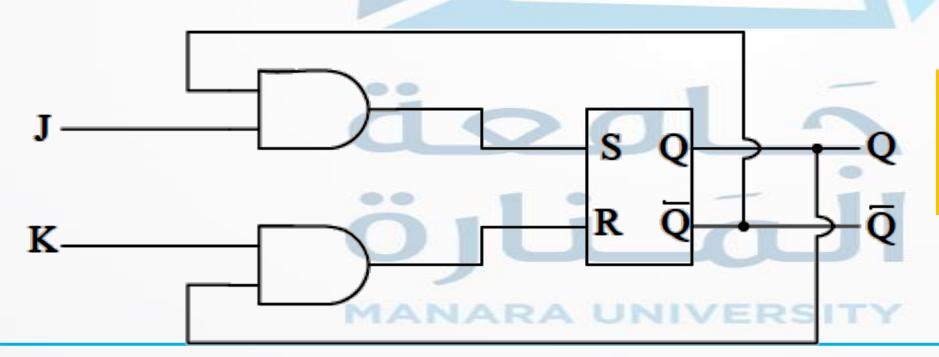
1. قلاب من نوع SR flip flop مكون من بوابات NOR.

2. قلاب من نوع T flip flop

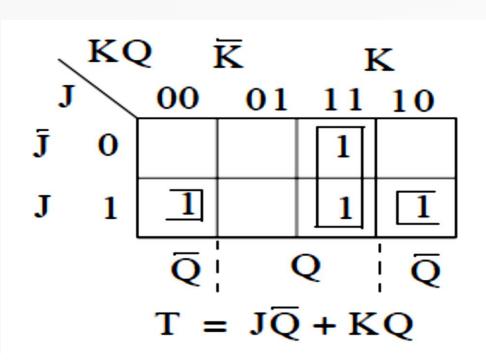
E. قلاب من نوع D flip flop

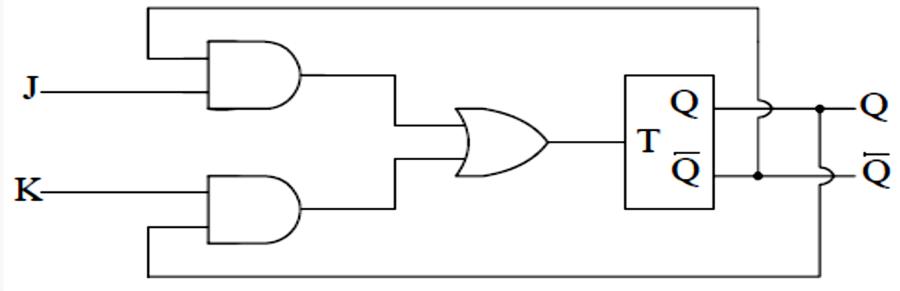
الحل: نقوم بكتابة جداول التحويل transition tables لجميع القلابات:


Flip Flop Type														
	S	R			J	K			D		T			
Q _n	Q_{n+1}	S	R	Q _n	Q_{n+1}	J	K	Q _n	Q_{n+1}	D	Q _n	Q_{n+1}	T	
0	0	0	X	0	0	0	X	0	0	0	0	0	0	
0	1	1	0	0	1	1	X	0	1	1	0	1	1	
1	0	0	1	1	0	X	1	1	0	0	1	0	1	
1	1	X	0	1	1	X	0	1	1	1	1	1	0	

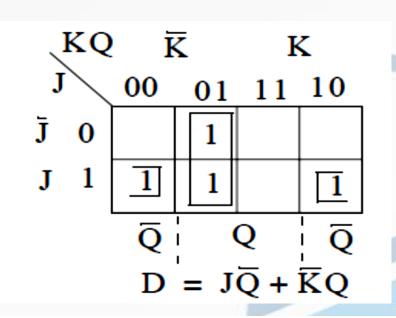

جدول الخواص للقلاب JK flip flop

نقوم بكتابة جدول الخواص للقلاب NOR بإضافة المشكل من بوابات NOR بإضافة الاعمدة 3-2-1 التي توافق حالات عمل القلابات الثلاث مع القلاب JK:

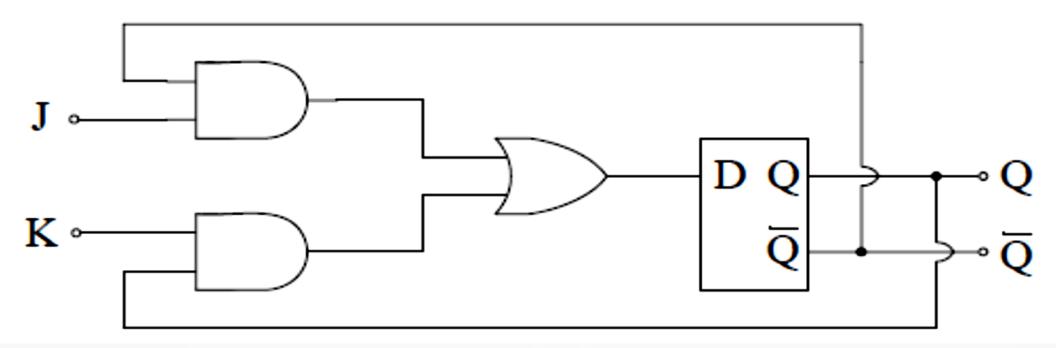

Inp	outs	Present State	Next State	(1	1)	(2)	(3)
J	K	Q _n	Q_{n+1}	S	R	T	D
0	0	0	0	0	X	0	0
0	0	1	1	X	0	0	1
0	1	0	0	0	X	0	0
0	1	1	0	0	1	1	0
1	0	0	1	1	0	1	1
1	0	1	1	X	0	0	1
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	0



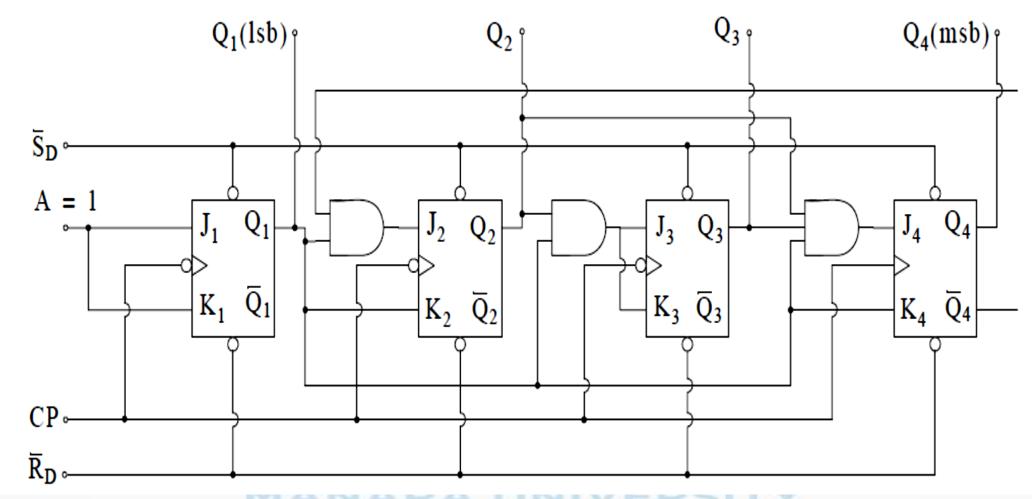
بذلك تكون الدارة المكافئة للقلاب JK باستخدام القلاب SR كما يلى:



نعيد مراحل الحل بالنسبة لبقية القلابات:



الدارة المكافئة للقلاب JK باستخدام القلاب T


الدارة المكافئة للقلاب JK باستخدام القلاب D

EXAMPLE 2

اشرح الدارة التعاقبية المبينة على الشكل:

الحل:

نلاحظ ان جميع القلابات في الدارة من نوع JK وتفعل عند الحافة الهابطة من نبضة الساعة clock pulse. كما ان جميع القلابات يتم تصفير خرجها بنفس اللحظة عند تطبيق جهد منخفض (صفر منطقي) على المدخل Reset Direct () ، ويتم تفعيلها بنفس اللحظة عند تطبيق جهد منخفض (صفر منطقي) على المدخل Set Set كالمدخل على المدخل (\overline{S}_D) Direct

$$J_1 = K_1 = 1$$

$$J_3 = K_3 = Q_1Q_2$$

$$J_2 = Q_1 \overline{Q}_4$$

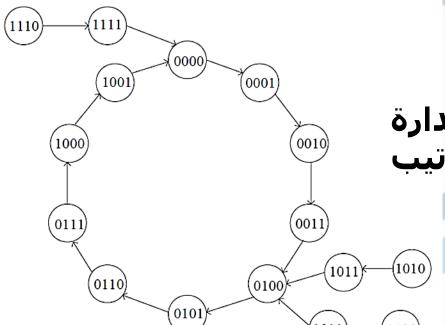
$$J_4 = Q_1 Q_2 Q_3$$

$$K_2 = Q_1$$

$$K_4 = Q_1$$

كما نستنتج من الدارة ان:

MANARA UNIVERSITY


باستخدام العلاقات السابقة يمكننا كتابة جدول الحالة State table :

	Presen	t State	. [F	Next State								
Q_4	Q_3	Q_2	Q_1	J ₄	K ₄	J_3	K ₃	J_2	K_2	J_1	K ₁	Q ₄	Q_3	Q_2	Q_1
0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	1	1	1	0	0	1	0
0	0	1	0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	1	1	1	1	1	1	0	1	0	0
0	1	0	0	0	0	0	0	0	0	1	1	0	1	0	1
0	1	0	1	0	1	0	0	1	1	1	1	0	1	1	0
0	1	1	0	0	0	0	0	0	0	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1
1	0	0	1	0	1	0	0	0	1	1	1	0	0	0	0
1	0	1	0	0	0	0	0	0	0	1	1	1	0	1	1
1	0	1	1	0	1	1	1	0	1	1	1	0	1	0	0
1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1
1	1	0	1	0	1	0	0	0	1	1	1	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	1	1	1	0	0	0	0

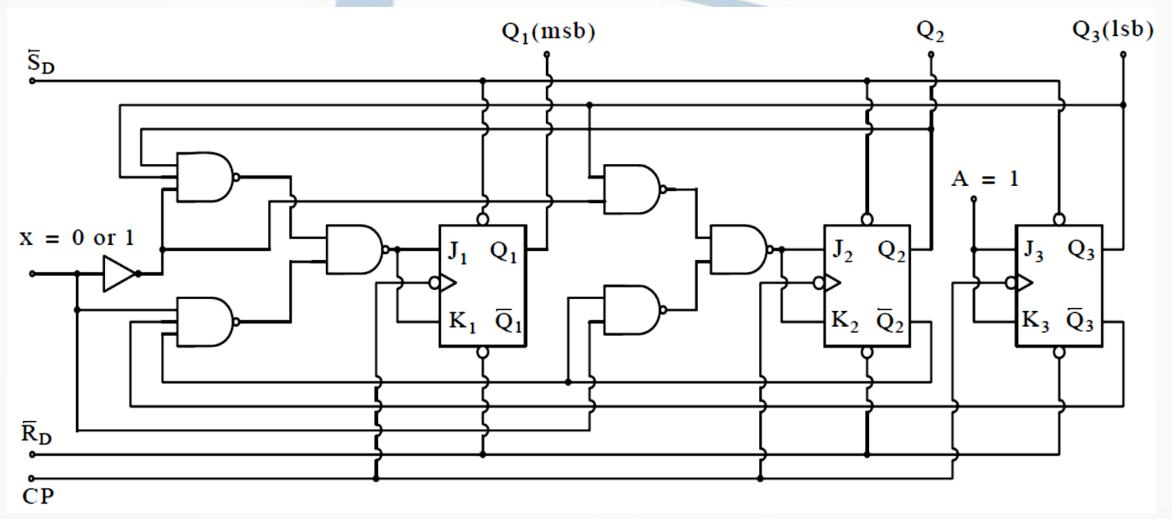
State diagram

نرسم مخطط الحالة State diagram للدارة:

· يوضح مخطط الحالة طريقة العد للدارة:

اذًا كَانت المداخل $Q_1; Q_2; Q_3; Q_4$ على مداخل الدارة > توافق 0; 0; 0; 0; 0 فان الدارة تعمل بالعد حسب الترتيب التالي : 0-1-2-3-4-3-7-8-9-9-1....

اذا كانت المداخل $Q_1; Q_2; Q_3; Q_4$ على مداخل الدارة توافق 1110 فان الدارة تعمل بالعد حسب الترتيب التالي :-9-8-7-6-5-4-3-2-1-0


اذا كانت المداخل $Q_1;Q_2;Q_3;Q_4$ على مداخل الدارة توافق 0;1;0;1 فان الدارة \sim اذا كانت المداخل الترتيب التالي :1-10-4-5-7-8-9-9-1....

اذا كانت المداخل $Q_1;Q_2;Q_3;Q_4$ على مداخل الدارة توافق 0;0;1;1 فان الدارة \sim اذا كانت المداخل الترتيب التالي :1-11-12-4-5-7-8-9-9-1....

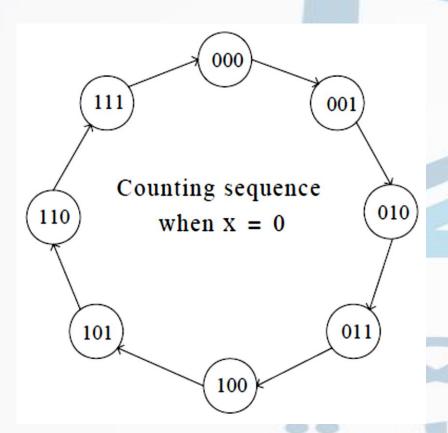
EXAMPLE 3

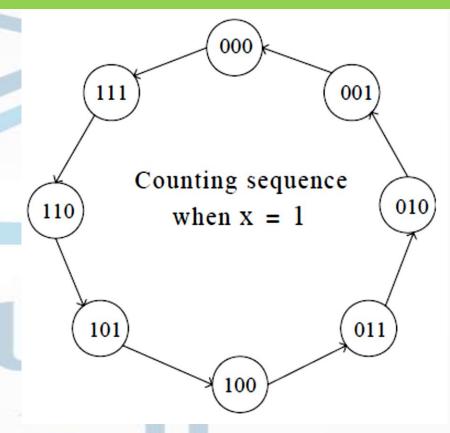
اشرح عمل الدارة التعاقبية التالية في الحالتين 2;1=X:

$$J_1 = K_1 = \overline{x}Q_2Q_3 + x\overline{Q_2}\overline{Q_3}$$

$$J_2 = K_2 = \overline{x}Q_3 + x\overline{Q_3}$$

$$J_3 = K_3 = 1$$




الحل: نكتب جدول الحالة للدارة مع الاخذ بعين الاعتبار ان:

Pre	sent S	tate		Flip Flop Inputs											Next State							
			x=0								X=	=1				x=0		x=1				
Q_1	Q_2	Q ₃	J ₁	K ₁	J ₂	K ₂	J ₃	K ₃	J ₁	K ₁	J ₂	K ₂	J ₃	K ₃	Q_1	Q_2	Q_3	Q_1	Q_2	Q ₃		
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1		
0	0	1	0	0	1	1	1	1	0	0	0	0	1	1	0	1	0	0	0	0		
0	1	0	0	0	0	0	1	1	0	0	1	1	1	1	0	1	1	0	0	1		
0	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	0	0	0	1	0		
1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1		
1	0	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	1	0	0		
1	1	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	0	1		
1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	0		

من جدول الحالة للدارة نستنتج مخطط الحالة للعداد.

X=1 طريقة العد التنازلية

X=0 طريقة العد التصاعدية