ENGINEERING ECONOMY

MONEY-TIME[2] RELATIONSHIPS AND EQUIVALENCE

Dr. Ayman Youssef

INTEREST FORMULAS FOR ALL OCCASIONS

- relating present and future values of single cash flows;
- relating a uniform series (annuity) to present and future equivalent

حَـامعة
النَمـنارة values;

- for discrete compounding and discrete cash flows;
- for deferred annuities (uniform series);
- equivalence calculations involving multiple interest;
- relating a uniform gradient of cash flows to annual and present equivalents;
- relating a geometric sequence of cash flows to present and annual equivalents;

INTEREST FORMULAS FOR ALL OCCASIONS

$>$ relating nominal and effective interest rates;
$>$ relating to compounding more frequently than once a year;
$>$ relating to cash flows occurring less often than compounding periods;
> for continuous compounding and discrete cash flows;
> for continuous compounding and continuous cash flows;

RELATING PRESENT AND FUTURE EQUIVALENT VALUES OF SINGLE CASH FLOWS

- Finding F when given P:
- Finding future value when given present value
- $F=P(1+i)^{N}$
- $(1+\mathrm{i})^{\mathrm{N}}$ single payment compound amount factor
- functionally expressed as F = (F/P, i\%,N)
- predetermined values of this are presented in column 2 of Appendix C of text.

RELATING PRESENT AND FUTURE EQUIVALENT VALUES OF SINGLE CASH FLOWS

- Finding P when given F:
- Finding present value when given future value
- $\mathrm{P}=\mathrm{F}[1 /(1+\mathrm{i})]^{\mathrm{N}}$
- $(1+\mathrm{i})^{-\mathrm{N}}$ single payment present worth factor
- functionally expressed as $P=F(P / F, i \%, N)$
- predetermined values of this are presented in column 3 of Appendix C of text;

- Finding F given A :
- Finding future equivalent income (inflow) value given a series of uniform equal Payments
- $F=A\left[\frac{(1+i)^{N}-\overline{1}}{1}\right]$
- functionally expressed as $\mathrm{F}=\mathrm{A}(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N}$)
- uniform series compound amount factor in []
- predetermined values are in column 4 of Appendix C of text

$$
\sqrt{1+2+3.4+5 \cdot 6.7 .8} \mathrm{~A}=
$$

$(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=(\mathrm{P} / \mathrm{A}, \mathrm{i}, \mathrm{N})(\mathrm{F} /$ P,i,N)
($\mathrm{F} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N})=(\mathrm{F} / \mathrm{P}, \mathrm{i}, \mathrm{N}-\mathrm{k})$

RELATING A UNIFORM SERIES (ORDINARY ANNUITY) TO PRESENT AND FUTURE EQUIVALENT VALUES

- Finding P given $A:$
- Finding present equivalent value given a series of uniform equal receipts
- $\left.P=A \left\lvert\, \frac{(1+i)^{N}-1}{i(1+i)^{N}}\right.\right]$
- uniform series present worth factor in []
- functionally expressed as $\mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, \mathrm{~N}$)
- predetermined values are in column 5 of Appendix C of text

$$
A=\frac{\uparrow_{1} \uparrow 2 \uparrow 3 \uparrow 4 \uparrow_{5} \uparrow 6 \uparrow 7 \uparrow 8}{P=?}
$$

الْـَــامعارة
الـمَـنارة
$(P / A, i \%, N)=(P / F, i, k)$

RELATING A UNIFORM SERIES (ORDINARY ANNUITY) TO PRESENT AND FUTURE EQUIVALENT VALUES

- Finding A given F:
- Finding amount A of a uniform series when given the equivalent future value

- sinking fund factor in []
- functionally expressed as $\mathrm{A}=\mathrm{F}(\mathrm{A} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N})$
- predetermined values are in column 6 of Appendix C of text

$(A / F, i \%, N)=1 /(F / A, i \%, N)$
($\mathrm{A} / \mathrm{F}, \mathrm{i} \%, \mathrm{~N})=(\mathrm{A} / \mathrm{P}, \mathrm{i} \%, \mathrm{~N})-\mathrm{i}$

RELATING A UNIFORM SERIES (ORDINARY ANNUITY) TO PRESENT AND FUTURE EQUIVALENT VALUES

- Finding A given P :
- Finding amount A of a uniform series when given the equivalent present value
$A=P\left[\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right.$
- capital recovery factor in []
- functionally expressed as A=P (A/P,i\%,N)
- predetermined values are in column 7 of Appendix C of text

$(A / P, i \%, N)=1 /(P / A, i \%, N)$

- Find P when given G :
- Find the present equivalent value when given the uniform gradient amount
- $P=G \begin{cases}1 \\ \left.\left.\left.-\left[\begin{array}{ll}(1+i)^{N-1} & N \\ \overline{i(1+i)^{N}} & \overline{(1+i)} N\end{array}\right]\right\},\right\} ?\right\}\end{cases}$
- Functionally represented as $P=G(P / G, i \%, N)$
- The value shown in $\}$ is the gradient to present equivalent conversion factor and is presented in column 8 of Appendix C (represented in the above parenthetical expression).

RELATING GEOMETRIC SEQUENCE OF CASH FLOWS TO PRESENT AND ANNUAL EQUIVALENTS
Projected cash flow patterns changing at an average rate of f each period;

حَـامعة
الْمَـنـارة

Resultant end-of-period cash-flow pattern is referred to as a geometric gradient series;
A_{1} is cash flow at end of period 1
$A_{k}=\left(A_{k-1}\right)(1+f), 2<k<N$
$\mathrm{A}_{\mathrm{N}}=\mathrm{A}_{1}(1+f)^{\mathrm{N}-1}$
$f=\left(\mathrm{A}_{\mathrm{k}}-\mathrm{A}_{\mathrm{k}-1}\right) / \mathrm{A}_{\mathrm{k}-1}$
f may be either positive or negative

Cash-flow diagram for a Geometric Sequence of Cash Flows

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Find P when given $A:$
- Find the present equivalent value when given the annual equivalent value ($\mathrm{i}=f$)

$$
A_{1}\left[1-(1+i)=N(1+f)^{N}\right]
$$

$P=$

$$
1-f
$$

which may also be written as

$$
A_{1}[1-(P / F, i \%, N)-(F / P, f \%, N)]
$$

$P=$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- Note that the foregoing is mathematically equivalent to the following ($\mathrm{i} \leqslant f$):

$$
\mathrm{P}=\frac{\mathrm{A}_{1}}{1+\bar{f}}\left(\mathrm{P} / \mathrm{A} \frac{1+i}{1+\bar{f}}-1, \mathrm{~N}\right)
$$

RELATING A GEOMETRIC SEQUENCE OF CASH FLOWS TO ANNUAL AND PRESENT EQUIVALENTS

- The foregoing may be functionally represented as A = P (A / P, i\%,N)
- The year zero "base" of annuity, increasing at constant rate $f \%$ is $\mathrm{A}_{0}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \mathrm{f} \%, \mathrm{~N})$
- The future equivalent of this geometric gradient is $F=P(F / P, i \%, N)$

RELATING A GEOMETRIC SEQUENCE OF CASH

- Find P when given A :
- Find the present equivalent value when given the annual equivalent value $(\mathrm{i}=f)$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{A}_{1} \mathrm{~N}(\mathrm{i}+\mathrm{i})-1 \text { which may be written as } \\
& \mathrm{P}=\mathrm{A}_{1} \mathrm{~N}(\mathrm{P} / \mathrm{F}, \mathrm{i} \%, 1)
\end{aligned}
$$

Functionally represented as $A=P(A / P, i \%, N)$

- The year zero "base" of annuity, increasing at constant rate $f \%$ is $\mathrm{A}_{0}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \mathrm{f} \%, \mathrm{~N})$
- The future equivalent of this geometric gradient is F = P (F / P, i\%, N)

INTEREST RATES THAT VARY WITH TIME

Find P given F and interest rates that vary over N
Find the present equivalent value given a future value and a varying interest rate over the period of the loan

$$
P=\frac{F_{N}}{\Pi^{N}\left(1+i_{k}\right)}
$$

NOMINAL AND EFFECTIVE INTEREST RATES

Nominal Interest Rate - r-For rates compounded more frequently than one year, the stated annual interest rate. Effective Interest Rate - i - For rates compounded more frequently than one year, the actual amount of interest paid.
$i=(1+r / M)^{M}-1=(F / P, r / M, M)-1$
M - the number of compounding periods per year
Annual Percentage Rate - APR - percentage rate per period times number of periods.

$$
A P R=r \times M
$$

- Single Amounts

- Given nominal interest rate and total number of compounding periods, P, F or A can be determined by
- $\quad F=P(F / P, i \%, N)$
- $\quad i \%=(1+r / M)^{M}-1$
- Uniform and / or Gradient Series

Given nominal interest rate, total number of compounding periods, and existence of a cash flow at the end of each period, P, F or A may be determined by the formulas and tables for uniform annual series and uniform gradient series.

CASH FLOWS LESS OFTEN THAN COMPOUNDING PERIODS

- Find A, given i, k and X, where:
- i is the effective interest rate per interest period
- k is the period at the end of which cash flow occurs
- X is the uniform cash flow amount
- Use: $A=X(A / F, i \%, k)$
- Find A, given i, k and X, where:
- i is the effective interest rate per interest period
- k is the period at the beginning of which cash flow occurs
- X is the uniform cash flow amount
- Use: $A=X(A / P, i \%, k)$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS

- Continuous compounding assumes cash flows occur at discrete intervals, but compounding is continuous throughout the interval.
- Given nominal per year interest rate -- r,
- compounding per year -- M
- one unit of principal $=[1+(r / M)]^{M}$
- Given $M / r=p, \quad[1+(r / M)]^{M}=[1+(1 / p)]^{r p}$
- Given $\lim [1+(1 / p)]^{p}=e^{1}=2.71828(F / P, r \%, N)=e$
- $\mathbf{i}=e^{r}-1$

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS
 Single Cash Flow

- Finding F given P
- Finding future equivalent value given present value
- $\mathrm{F}=\mathrm{P}\left(e^{\mathrm{rN}}\right)$
- Functionally expressed as (F / P, r\%, N)
- e^{rN} is continuous compounding compound amount
- Predetermined values are in column 2 of appendix

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Single Cash Flow

- Finding P given F
- Finding present equivalent value given future value
- $\mathrm{P}=\mathrm{F}\left(e^{-\mathrm{rN}}\right)$
- Functionally expressed as (P / F, ro, N)
- $e^{-\mathrm{rN}}$ is continuous compounding present equivalent
- Predetermined values are in column 3 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH

FLOWS

Uniform Series

- Finding F given A
- Finding future equivalent value given a series of uniform equal receipts
- $\mathrm{F}=\mathrm{A}\left(e^{\mathrm{rN}}-1\right) /\left(e^{r}-1\right)$
- Functionally expressed as (F / A, r\%, N)
- $\left(e^{r N}-1\right) /\left(e^{r}-1\right)$ is continuous compounding compound amount
- Predetermined values are in column 4 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding P given A
- Finding present equivalent value given a series of uniform equal receipts
- $\mathrm{P}=\mathrm{A}\left(e^{\mathrm{rN}}-1\right) /\left(e^{\mathrm{rN}}\right)\left(e^{\mathrm{r}}-1\right)$
- Functionally expressed as ($\mathrm{P} / \mathrm{A}, \underline{\mathrm{r}} \mathrm{r}, \mathrm{N}$)
- $\left(e^{r N}-1\right) /\left(e^{r N}\right)\left(e^{r}-1\right)$ is continuous compounding present equivalent
- Predetermined values are in column 5 of appendix D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS Uniform Series

- Finding A given F

حَــامعة
النَمــنارة

- Finding a uniform series given a future value
- $\mathrm{A}=\mathrm{F}\left(e^{r}-1\right) /\left(e^{r \mathrm{~N}}-1\right)$
- Functionally expressed as (A/F, r$\%, N$)
- $\left(e^{r}-1\right) /\left(e^{r N}-1\right)$ is continuous compounding sinking fund
- Predetermined values are in column 6 of appendix

D of text

CONTINUOUS COMPOUNDING AND DISCRETE CASH FLOWS الححاضرة الرابعة Uniform Series
 - Finding A given P

- Finding a series of uniform equal receipts given present equivalent value
- $\mathrm{A}=\mathrm{P}\left[e^{r N}\left(e^{r}-1\right) /\left(e^{r N}-1\right)\right]$
- Functionally expressed as (A / P, r\%, N)
- $\left[e^{r N}\left(e^{r}-1\right) /\left(e^{r N}-1\right)\right]$ is continuous compounding capital recovery
- Predetermined values are in column 7 of appendix

D of text

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

Continuous flow of funds suggests a series of cash flows occurring at infinitesimally short intervals of time Given:
a nominal interest rate or \underline{r} p is payments per year

$$
[1+(r / p)]^{p}-1
$$

$r[1+(r / p)]^{p}$
Given $\operatorname{Lim}[1+(r / p)]^{p}=e^{r}$
For one year ($\mathrm{P} / \mathrm{A}, \underline{\mathrm{r} \%, 1} \mathrm{I})=\left(e^{r}-1\right) / r e^{r}$

Finding F given A
Finding the future equivalent given the continuous funds flow
$\left.\mathrm{F}=\mathrm{A}\left[T e^{r N}-1\right) / r\right]$
Functionally expressed as ($\mathrm{F} / \mathrm{A}, \mathrm{r} \%, \mathrm{~N}$)
($e^{r N}-1$)/r is continuous compounding compound amount
Predetermined values are found in column 6 of appendix D of text.

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding P given A
- Finding the present equivalent given the continuous funds flow
- $\mathrm{P}=\mathrm{A}\left[\left(e^{\mathbb{N}}-1\right) / r e^{\mathbb{N}}\right]$
- Functionally expressed as ($\mathrm{P} / \mathrm{A}, \mathrm{r} \%, \mathrm{~N}$)
- $\left(e^{N N}-1\right) / r e^{N N}$ is continuous compounding present equivalent
- Predetermined values are found in column 7 of appendix D of text.
- Finding A given F
- Finding the continuous funds flow given the future equivalent
- $\overline{\mathrm{A}}=\mathrm{F}\left[\mathrm{r} /\left(e^{\mathrm{N}}-1\right)\right]$
- Functionally expressed as ($\overline{\mathrm{A}} / \mathrm{F}, \mathrm{r} \%, \mathrm{~N}$)
- $r /\left(e^{\mathbb{N}}-1\right)$ is continuous compounding sinking fund

CONTINUOUS COMPOUNDING AND CONTINUOUS CASH FLOWS

- Finding Ā given P
- Finding the continuous funds flow given the present equivalent
- $A=F\left[r e^{N} /\left(e^{N}-1\right)\right]$
- Functionally expressed as (A/P, $\wp \%, \mathrm{~N}$)
- re ${ }^{\mathbb{N}} /\left(e^{\mathbb{N}}-1\right)$ is continuous compounding capital recovery

