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1. Introduction

The modulus is a property that measures the resistance of a material to elastic deformation.

If rods of identical cross section are laid on two widely spaced supports and then identical weights are 
hung at their centers, they bend elastically by very different amounts depending on the material of 
which they are made.
Low modulus materials are floppy and deflect a lot when they are loaded. Sometimes this is desirable, 
of course: springs, cushions, vaulting poles 2.

But in the great majority of mechanical applications, deflection is undesirable, and the engineer seeks 
a material with a high modulus. 

The modulus is reflected, too, in the natural frequency of vibration of a structure. A beam of low 
modulus has a lower natural frequency than one of higher modulus (although the density matters 
also) and this, as well as the deflection, is important in design calculations. 

Before we look in detail at the modulus, we must first define stress and strain
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2. Definition of stress 
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A block of material with a force F applied normally at its upper face, as in (Fig.a).
The force is transmitted through the block and is balanced by the equal, opposite
force acting at the lower face.

𝜎 = Τ𝐹𝑡 𝐴 & 𝜏 = Τ𝐹𝑠 𝐴

This the normal stress (tension or compression) caused by a force normal to the face.

Suppose now that the force acted not normal to the face but at an angle to it, as shown 
in (Fig.b). The force can be resolved into two components: 𝐹𝑡, normal to the face and 𝐹𝑠

parallel to it. The normal component creates a normal stress in the block. Its magnitude, 
as before, is 𝐹𝑡 /

𝐴. The other component, 𝐹𝑠, creates a tangential stress in the block 
parallel to the direction of 𝐹𝑠, knowns as shear stress and given by: 𝜏 = Τ𝐹𝑠 𝐴

𝜎 = Τ𝐹 𝐴

The whole of the block is said to be in a state of stress. The intensity of the stress, is
measured by the force F divided by the area,𝐴, of the block face, giving: 𝜎 = Τ𝐹 𝐴

(a) 

(b) 

The magnitude of a stress is always equal to the magnitude of a force divided by the area 
of the face on which it acts. stresses are measured in units of force per area. 
For engineering applications (Pa N m-2) is very small, instead (MPaMN m-2N mm-2).
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The general case of stress state will be studied in later courses. 

Simple tensionSimple compression

The simplest is that of simple tension or compression (as in
a tension member loaded by pin joints at its ends or in a
pillar supporting a structure in compression).

𝜎 =
𝐹

𝐴
𝜎 =

𝐹

𝐴

The second common state of stress is that of biaxial tension. If a spherical shell
(like a balloon) contains an internal pressure, then the skin of the shell is loaded
in two directions, not one, as shown in next figure.

Here in the next figures are shown four simple commonly 
occurring states of stress. 
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The third common state of stress is that of hydrostatic pressure. 
This occurs deep in the earth’s crust, or deep in the ocean, when a 
solid is subjected to equal compression on all sides.

𝜎1 = 𝜎2 = 𝜎3 = −𝑝

The final common state of stress is that of pure shear. If you try to twist a tube, 
then elements of it are subjected to pure shear, as shown. This shear stress is 
simply the shearing force divided by the area of the face on which it acts.

Remember one final thing; if you know the stress in a body, then the force acting across any face of it is the 
stress resultant over this area. If the stress in uniform the force is the stree times the area.

𝜏 =
𝑀

2𝜋𝑡𝑟2
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3. Definition of strain [Dimensionless]
Materials respond to stress (or loading) by straining. Under a given stress, a stiff 
material (like steel) strains only slightly; a floppy material strains much more.

The kind of stress that we called a tensile stress induces an extension. If the stressed 
cube of side 𝑙, shown in (Fig.a) extends by an amount 𝑢 parallel to the tensile stress, 
the nominal tensile strain is: 𝜀𝑛 = Τ𝑢 𝑙 .

When it strains in this way, the cube usually gets thinner. The amount by which it shrinks 
inwards is described by Poisson’s ratio, , which is the negative of the ratio of the inward 
strain to the original tensile strain: 𝜈 = − Τ𝑙𝑎𝑡𝑒𝑟𝑙𝑎 𝑠𝑡𝑟𝑎𝑖𝑛 𝑙𝑜𝑚𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

A shear stress induces a shear strain (Fig.b). If a cube shears sideways by an amount 
𝑤 then the shear strain is defined by: 𝛾 = Τ𝑤 𝑙 = tan𝜃 ≈ 𝜃 (for small strains) 

The modulus of the material describes this property, but before we can measure 
it, or even define it, we must define strain properly.

Finally, hydrostatic pressure induces a volume change called dilatation (Fig.c). If 
the volume change is ∆𝑉 and the cube volume is 𝑉, the dilatation is defined: 𝜀𝑉 = ΤΔ𝑉 𝑉
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4. Hooke’s law
The elastic moduli can now be defined through Hooke’s law, which is merely a description of the 
experimental observation that, when strains are small, the strain is very nearly proportional to the 
stress; that is, they are linear elastic. 

The nominal tensile strain, for example, is proportional to the tensile stress; for simple tension: 𝜎 = 𝐸𝜀𝑛.

where 𝐸 is called Young’s modulus. For metals, the same relationship also holds for stresses and strains in 
simple compression.

In the same way, the shear strain is proportional to the shear stress, with: 𝜏 = 𝐺𝛾 .

where 𝐺 is the shear modulus.

Finally, the negative of the dilatation is proportional to the pressure (because positive pressure causes a 
shrinkage of volume) so that: 𝑝 = −𝐾𝜀𝑉 .

Wher𝐾 is called the bulk (dilation) modulus. 

Because strains are dimensionless, the moduli have the same dimensions as those of stress: force per unit 
area (N m-2). In those units, the moduli are enormous, so they are usually reported instead in units of GPa.
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This linear relationship between stress and strain is a very handy one when calculating the response
of a solid to stress, but it must be remembered that most solids are elastic only to very small strains: up
to about 0.001. Beyond that some break and some become plastic - and this will be discussed later.

One final point. Poisson’s ratio was earlier defined as the negative of the lateral shrinkage strain to the tensile 
strain. This quantity, Poisson’s ratio, is also an elastic constant, so there are four elastic constants: 
𝐸, 𝐺, 𝐾, 𝑎𝑛𝑑 𝜈 . In a moment when the elastic constants are given we only 𝐸 will be listed. For many 
materials it is useful to know that

Although for some these relationships can be more complicated as it will be seen in later courses.

A few solids like rubber are elastic up to very much larger strains of order 4 or 5, but they cease to be linearly 
elastic (that is the stress is no longer proportional to the strain) after a strain of about 0.01.
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5. Measurement of Young’s modulus 

How is Young’s modulus measured? One way is to apply a tension or
compression to the material with a known force, and measure the strain.
Young’s modulus is then given by𝐸 = Τ𝜎 𝜀𝑛; defined as described earlier.

But this is not so good way to measure the modulus. For one thing, if
the modulus is large, the extension 𝑢 may be too small to measure
with precision. And, for another, if anything else contributes to the
strain, like creep (which we will discussed later), or deflection of the
testing machine itself, then it will lead to an incorrect value for𝐸.
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A better way of measuring 𝐸 is to measure the natural frequency
of vibration of a round rod of the material, simply supported at
its ends and heavily loaded by a mass M at the middle (so that
we may neglect the mass of the rod itself). The frequency of
oscillation of the rod, f cycles per second (or hertz), is given by

𝑓 =
1

2𝜋

3𝜋𝐸𝑑4

4𝑙3𝑀

Τ1 2

where 𝑙 is the distance between the supports and d is the diameter of the rod. From this,

Use of stroboscopic techniques and carefully designed apparatus can make this sort of method very accurate

𝐸 =
16𝜋𝑀𝑙3𝑓2

3𝑑4

The best of all methods of measuring E is to measure the velocity of sound in the material. 
The velocity of longitudinal waves, l, depends on Young’s modulus and the density, :

𝑣1 =
𝐸

𝜌

Τ1 2

𝑣1 is measured by ‘‘striking’’ one end of a bar of the material (by glueing a piezoelectric crystal there and
applying a charge-difference to the crystal surfaces) and measuring the time sound takes to reach the other
end(by attaching a second piezoelectric crystal there). Most moduli are measured by one of these last two
methods.
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6. Data for Young’s modulus
A good perspective of the spread of moduli is given by the 
bar chart shown in next figure.
Ceramics & metals, even the floppiest of them like lead, lie 
near the top of this range.
Polymers & elastomers are much more compliant, the 
common ones (polyethylene, PVC, & polypropylene) lying 
several decades lower.
Composites span the range between polymers and ceramics.

Table 1 is a ranked list of Young’s modulus of materials, to
be used in problems & in particular applications.
Diamond is at the top, with a modulus of 10+3 GPa; soft
rubbers and foamed polymers are at the bottom with
moduli as low as 10-3 GPa.
Lower modulus can be made!!: jelly, for instance, has a
modulus of about 10-6 GPa.
Practical engineering materials lie in the range 10+3 to 10-3

GPa: a range of 106. This is the range you have to choose
from when selecting a material for a given application.
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Table 3.1 Data for Young’s modulus, 𝐸 Table 3.1 Data for Young’s modulus, 𝐸. (Continued) 
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Table 3.1 Data for Young’s modulus, 𝐸. (Continued) Table 3.1 Data for Young’s modulus, 𝐸. (Continued) 

To understand the origin of the modulus, why it has the values it 
does, why polymers are much less stiff than metals, and what we 
can do about it, we have to examine the structure of materials, and 
the nature of the forces holding the atoms together. 
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Examples

3.1 (a) Define Poisson’s ratio, 𝜈 ; and the dilatation, 𝜀𝑉 , in the straining of an elastic solid.
(b) Calculate the dilatation 𝜀𝑉 in the uniaxial elastic extension of a bar of material, assuming     

strains are small, in terms of 𝜈 and the tensile strain 𝜀.Hence find the value of 𝜈 for which  
the volume change during elastic deformation is zero.

(c) Poisson’s ratio for most metals is about 0.3. For cork it is close to zero; for rubber it is close   
to 0.5. What are the approximate volume changes in each of these materials during an  

elastic tensile strain of 𝜀?

Answers 
(b) 0.5; 

(c) ‘‘most metals’’: 0.4, cork: 𝜀 , rubber: 0.
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Examples

3.2  The sole of a shoe is to be surfaced with soft synthetic rubber having  
a Poisson’s ratio of 0.5.  The cheapest solution is to use a solid rubber 
slab of uniform thickness. However, a colleague suggests that the 
sole would give better cushioning if it were moulded as shown in the 
diagram. Is your colleague correct? If so, why?

3.3 Explain why it is much easier to push a cork into a wine bottle than a rubber bung. Poisson’s ratio is     
zero for cork and 0.5 for rubber.
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problems
3.1 A steel bolt 12 mm in diameter carries a tensile load of 2 tonne (2 metric tons, or 2  1,000 kgf). 
What is the stress in the bolt in MPa? 

3.2 Calculate the hydrostatic pressure (in tonne m–2) at the bottom of a swimming pool 2 m deep. The 
density of water is approximately 1 gram per cubic centimeter (1 g cm–3). Is it a suitable unit for pressure?

3.3 A metal rod 100 cm long is stretched in tension by 1 mm. What is the nominal tensile strain?
If Poisson’s ratio for the metal is 0.3. The initial diameter of the rod is 10 mm. Calculate the reduction in 
diameter when the rod is stretched. 

3.4 A cube of polymer foam of side 10 cm is sheared as shown in next 
figure. The shear displacement w is 1 mm. Calculate the engineering 
shear strain. 

3.5 A cube of closed-cell (waterproof) polymer foam of side 100 mm 
is immersed in water to a given depth. The sides of the cube decrease 
by 1 mm as a result. Calculate the dilatation. 

173 MPa

200 g cm-2= 2000 kg m-2= 2 tonne m-2= 0.0196 Mpa=0.196 bar
𝜀𝑛 = ∆𝑙

𝑙
=0.001

∆𝐷 = 𝐷𝜀𝐷 = 𝐷(−𝜐𝜀𝑛) = −3 × 10−3𝑚𝑚 = −0.003 𝑚𝑚

𝛾 = 𝑤
𝑙
= 1 [𝑚𝑚]

10×10[𝑚𝑚]
=0.01

𝜀𝑉 = 3𝜀𝑛 = −0.03
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3.6 Young’s modulus for steel is 200 GN m–2. Calculate the tensile stress required to produce a tensile 
strain of 0.1%. 
3.7 A cylindrical test piece of metal 5 mm in diameter is loaded in tension to 600 kg. Strain gauges glued 
to the surface of the test piece register a strain of 0.00435 at this load. Calculate Young’s modulus for 
the metal. Compare your value with the values for 𝐸 in Table 3.1, and say what the metal is likely to be. 

3.8 A strain gauge is glued on to the surface of an aluminum bridge girder. A heavy vehicle is then driven 
across the bridge, causing the strain gauge reading to increase by 0.0005. Calculate the change in stress caused 
by the vehicle. 

3.9 In order to minimize mistakes when reading or recording small strains, strain gauge outputs are often given 
as “microstrain,” or strain  10–6. Rewrite the strain of 0.0005 as microstrain. 

3-10 Explain why the units of strain are dimensionless. Use this to explain why the units of elastic moduli are 
stress units. Why are moduli usually given in GPa, whereas stress units are usually given in MPa? 

𝜎 = 𝐸𝜀 = 200 × 0.001 = 0.2 𝐺𝑃𝑎 = 200 𝑀𝑃𝑎

𝐸 =
𝜎

𝜀
=

𝐹

𝜀𝐴
= 68.9 𝐺𝑃𝑎 aluminum (or one of its alloys).

𝜎 = 𝐸𝜀 = 69 × 103 × 0.0005 = 34.5 𝑀𝑃𝑎

𝜀 = 0.0005 = 5 × 10−4 = 500 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑎𝑖𝑛
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