Boolean Logic الدنطق البولياني

Epp, sections 1.1 and 1.2

Applications of Booleăhillogic

- Computer programs
- And computer addition
- Logic problems
- Sudoku

Boolean propositionsoifitil

- A proposition is a statement that can be either true or false
- "The sky is blue"
- "I is a Engineering major"
- "x $x=y^{\prime}$
- Not propositions:
- "Are you Bob?"
- "x := 7"

Boolean variables

- We use Boolean variables to refer to propositions
- Usually are lower case letters starting with p (i.e. p, q, r, s, etc.)
- A Boolean variable can have one of two values true (T) or false (F)
- A proposition can be...
- A single variable: p
- An operation of multiple variables: $p \wedge(q \vee \neg r)$

Introduction to Logical Operators

- About a dozen logical operators
- Similar to algebraic operators + * - /
- In the following examples,
- $p=$ "Today is Friday"
- q = "Today is my birthday"

- A not operation switches (negates) the truth value
-Symbol: \neg or ~
- In C++ and Java, the operand is !

- $\neg p=$ "Today is not Friday"

Logical operators: Andiactivin

- An and operation is true if both operands are true
-Symbol: ^
- It's like the ' A ' in And
- In C++ and Java, the operand is $\& \&$
- $p \wedge q=$ "Today is Friday and today is my birthday"

Logical operators: Or

- An or operation is true if either operands are true
-Symbol: v
- In C++ and Java, the operand is ||
- $p \vee q=$ "Today is Friday or today is my birthday (or

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Logical operators: Exclusive Or

- An exclusive or operation is true if one of the operands are true, but false if both are true
- Symbol: \oplus
- Often called XOR
- $p \oplus q \equiv(p \vee q) \wedge \neg(p \wedge q)$
- In Java, the operand is ${ }^{\wedge}$ (but not in $\mathrm{C}++$)

- $p \oplus q=$ "Today is Friday or today is my birthday, but not both"

Inclusive Or versus Exedusive Or

- Do these sentences mean inclusive or exclusive or?
- Experience with C++ or Java is required
- Lunch includes soup or salad
- To enter the country, you need a passport or a driver's license
- Publish or perish

Logical operators: Nand and Nor

- The negation of And and Or, respectively
- Symbols: | and \downarrow, respectively
- Nand: $p \mid q \equiv \neg(p \wedge q)$
- Nor: $p \downarrow q \equiv-(p \vee q)$

p	q	$p \wedge q$	$p \vee q$	$p \mid q$	$p \downarrow q$
T	T	T	T	F	F
T	F	F	T	T	F
F	T	F	T	T	F
F	F	F	F	T	T

Logical operators: Conditional 1

- A conditional means "if p then q "
- Symbol: \rightarrow
- $p \rightarrow q=$ "If today is Friday, then today is my birthday"

the the antecedent consequence

p	q	$p \rightarrow q$	$\neg p \vee q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Logical operatoksicile Conditional 2

- Let $p=$ " 1 am elected" and $q=$ "I will lower taxes"
- I state: $p \rightarrow q=$ " $|\mathrm{f}|$ am elected, then I will lower taxes"
- Consider all possibilities
- Note that if p is false, then
 the conditional is true regardless of whether q is true or false

Logical operators: Conditional 3

				Conditional	Inverse	Converse	Contra- positive
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	T	F
F	T	T	F	T	F	F	T
F	F	T	T	T	T	T	T

Logical operators: Conditional 4

- Alternate ways of stating a conditional:
- p implies q
- If p, q
- p is sufficient for q
- q if p
- q whenever p
- q is necessary for p
- p only if q

Logical operators: Biknditional 1

- A bi-conditional means " p if and only if q "
- Symbol: \leftrightarrow
- A
$\cdot p \leftrightarrow q=p \rightarrow q \wedge q \rightarrow p$
- Note that a bi-conditional has the opposite truth values
 of the exclusive or

Logical operators: Bi-conditional 2

- Let $p=$ "You take this class" and $q=$ "You get a grade"
- Then $p \leftrightarrow q$ means "You take this class if and only if you get a grade"
- Alternatively, it means "If you take this class, then

p	q	$p \leftrightarrow q$	
T	T	T	
T	F	F	
F	T	F	
保			

Boolean operators suminary

		not	not	and	or	xor	nand	nor	conditional	biconditional
p	q	$\neg p$	$\neg q$	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \mid q$	$p \downarrow q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	F	T	T	F	F	F	T	T
T	F	F	T	F	T	T	T	F	F	F
F	T	T	F	F	T	T	T	F	T	F
F • Learnpwhatthey mean, flon't jpst nemorizethe table \ddagger										T

Precedence of operatorich

- Just as in algebra, operators have precedence
- $4+3 * 2=4+(3 * 2)$, not $(4+3) * 2$
- Precedence order (from highest to lowest): $\neg \wedge \vee \rightarrow \leftrightarrow$
- The first three are the most important
- This means that $p \vee q \wedge \neg r \rightarrow s \leftrightarrow t$ yields: $(p \vee(q \wedge(\neg r))) \leftrightarrow(s \rightarrow t)$
- Not is always performed before any other operation

Translating English Seintences

- Problem:
- $p=$ "It is below freezing"
- $q=$ "It is snowing"
- It is below freezing and it is snowing
- It is below freezing but not snowing
- It is not below freezing and it is not snowing
- It is either snowing or below freezing (or both)
- If it is below freezing, it is also snowing
- It is either below freezing or it is snowing, but it is not snowing if it is below freezing

- That it is below freezing is necessary and sufficient for it to be snowing

Translation Example

- Heard on the radio:
- A study showed that there was a correlation between the more children ate dinners with their families and lower rate of substance abuse by those children
- Announcer conclusions:
- If children eat more meals with their family, they will have lower substance abuse
- If they have a higher substance abuse rate, then they did not eat more meals with their family

Translation Example

- Let $p=$ "Child eats more meals with family"
- Let $q=$ "Child has less substance abuse
- Announcer conclusions:
- If children eat more meals with their family, they will have lower substance abuse
- $p \rightarrow q$
- If they have a higher substance abuse rate, then they did not eat more meals with their family
- $\neg q \rightarrow \neg p$
- Note that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent

Translation Example $1 \underset{\text { dituin }}{\text { diti }}$

- Let $p=$ "Child eats more meals with family"
- Let $q=$ "Child has less substance abuse"
- Remember that the study showed a correlation, not a causation

p	q	result	conclusion
T	T	T	T
T	F	$?$	F
F	T	$?$	T
F	F	T	T

Translation Example Zoun ijuil

- "I have neither given nor received help on this exam"
- Rephrased: "I have not given nor received ..."
- Let $p=$ "I have given help on this exam"
- Let $q=$ "I have received help on this exam"
- Translation is: $\neg p \downarrow q$

p	9	$\neg p$	$\neg p \downarrow q$
T	T	F	F
T	F	F	T
F	T	T	F
F	F	Heseusy T	F

Translation Example Z Zujuilin

- What they mean is "I have not given and I have not received help on this exam"
- Or "I have not (given nor received) help on this exam"

Tautology and Contraditution

- A tautology is a statement that is always true
- $p \vee \neg p$ will always be true (Negation Law)
- A contradiction is a statement that is always false
- $p \wedge \neg p$ will always be false (Negation Law)

p	$p \vee \neg p$	$p \wedge \neg p$
T	T	F
F	T	F

Logical Equivalence

- A logical equivalence means that the two sides always have the same truth values
- Symbol is \equiv or \Leftrightarrow
- We'll use \equiv, so as not to confuse it with the bi-conditional

Logical Equivalences ofand

- $p \wedge \mathbf{T} \equiv p$

Identity law

p	T	$p \wedge \mathrm{~T}$
T	T	T
F	T	F

- $p \wedge F \equiv F$

Domination law

p	F	$p \wedge F$
T	F	F
F	F	F

Logical Equivalefees of And

- $\mathrm{p} \wedge \mathrm{p} \equiv \mathrm{p} \quad$ Idempotent law

p	p	$p \wedge p$
T	T	T
F	F	F

- $p \wedge q \equiv q \wedge p$

Commutative law

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{q} \wedge \mathrm{p}$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

Logical Equivalences ofand

- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ Associative law

p	q	r	$\mathrm{p} \wedge \mathrm{q}$	$(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r}$	$\mathrm{q} \wedge \mathrm{r}$	$\mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$
T	T	T	T	T	T	T
T	T	F	T	F	F	F
T	F	T	F	F	F	F
T	F	F	F	F	F	F
F	T	T	F	F	T	F
F	T	F	F	F	F	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

Logical Equivalences ofocior

- $p \vee \mathbf{T} \equiv \mathbf{T}$

Identity law

- $p \vee F \equiv p$
- $p \vee p \equiv p$
- $p \vee q \equiv q \vee p$
- $(p \vee q) \vee r \equiv p \vee(q \vee r)$

Idempotent law
Commutative law
Associative law

Corollary of the Associlative Law

- $(p \wedge q) \wedge r \equiv p \wedge q \wedge r$
- $(p \vee q) \vee r \equiv p \vee q \vee r$
- Similar to $(3+4)+5=3+4+5$
- Only works if ALL the operators are the same!

Logical Equivalences ofod ot

- $\neg(\neg p) \equiv p$
- $p \vee \neg p \equiv T$
- $p \wedge \neg p \equiv F$

Double negation law
Negation law
Negation law

DeMorgan's Law

- Probably the most important logical equivalence
- To negate $\mathrm{p} \wedge q$ (or $p \vee q$), you "flip" the sign, and negate BOTH p and q
- Thus, $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- Thus, $\neg(p \vee q) \equiv \neg p \wedge \neg q$

pq	¢	\neg	$p \wedge q$	$\neg(p \wedge q)$	$\neg \mathrm{p} \vee \neg \mathrm{q}$	$\mathrm{p} \vee \mathrm{q}$	$\neg(p \vee q)$	$\neg p \wedge \neg \mathrm{q}$
TT	F	F	T	F	F	T	F	F
T F	F	T	F	T	T	T	F	F
FT	T	F	F	T	T	T	F	F
FF	T	T	F	T	T	F	T	T

Yet more equivalencesioil

- Distributive:

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& p \vee(p \wedge q) \equiv p \\
& p \wedge(p \vee q) \equiv p
\end{aligned}
$$

How to prove two propositions are equivalent?

-Two methods:

- Using truth tables
- Not good for long formulae
- In this course, only allowed if specifically stated!
- Using the logical equivalences
- The preferred method
- Example: show that:

$$
(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
$$

Using Truth Tables

$$
(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
$$

p	q		$\mathrm{p} \rightarrow \mathrm{r}$	$\mathrm{q} \rightarrow \mathrm{r}$	$(p \rightarrow r) \vee(q \rightarrow r)$	p^q	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
T	T		T	T		T	
T	T		F	F		T	
T	F	T	T	T		F	
T	F	F	F	T		F	
F	T	T	T	T		F	
F	T	F	T	F		F	
F	F	T	T	T		F	
F	F	F	T	T		F	

Using Logical Equivale ences

$$
(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r \quad \text { Original statement }
$$

DeMorgan's Law $\neg(p \wedge q) \equiv \neg p \vee \neg q$
Asssoriativity φ fノE $(\neg p p \rightsquigarrow \sim n \phi) \vee(r \neg q \vee r) \equiv \neg p \vee r \vee \neg q \vee r$
-pevarfanging $r \equiv \neg p \vee \neg q \vee r$

Logical Thinking

- At a trial:
- Bill says: "Sue is guilty and Fred is innocent."
- Sue says: "If Bill is guilty, then so is Fred."
- Fred says: "I am innocent, but at least one of the others is guilty."
- Let $\mathrm{b}=$ Bill is innocent, $\mathrm{f}=$ Fred is innocent, and $\mathrm{s}=$ Sue is innocent
- Statements are:
- $\neg \mathrm{s} \wedge \mathrm{f}$
- $\neg b \rightarrow-f$
- $f \wedge(\neg b \vee \neg s)$

Can all of their statements be true?

- Show: $(\neg s \wedge f) \wedge(\neg b \rightarrow-f) \wedge(f \wedge(\neg b \vee \neg s))$

b	f	s	$\neg b$	$\neg f$	$\neg s$	$\neg S \wedge f$	$\neg b \rightarrow \neg f$
T	T	T	F	F	F	F	T

$\mathrm{f} \wedge(\neg \mathrm{b} \vee \neg \mathrm{s})$
F
F
F
T
T
F
F

Are all of their statementstrue?

Show values for s, b, and $\begin{gathered}\text { folisuch } \\ \text { sin }\end{gathered}$ true

$$
\begin{array}{rlrl}
(\neg s \wedge f) \wedge(\neg b \rightarrow \neg f) \wedge(f \wedge(\neg b \vee \neg s)) & \equiv T & \text { Original statement } \\
(\neg s \wedge f) \wedge(b \vee \neg f) \wedge(f \wedge(\neg b \vee \neg s)) \equiv T & \text { Definition of implication } \\
\neg s \wedge f \wedge(b \vee \neg f) \wedge f \wedge(\neg b \vee \neg s) \equiv T & \text { Associativity of AND } \\
\neg \wedge \wedge f \wedge f \wedge(b \vee \neg f) \wedge(\neg b \vee \neg s) \equiv T & \text { Re-arranging } \\
\neg s \wedge f \wedge(b \vee \neg f) \wedge(\neg b \vee \neg s) \equiv T & \text { Idempotent law } \\
f \wedge(b \vee \neg f) \wedge \neg \neg \wedge(\neg s \vee \neg) \equiv T & \text { Re-arranging } \\
f \wedge(b \vee \neg f) \wedge \neg s \equiv T & \text { Absorption law } \\
(f \wedge(b \vee \neg f) \wedge \neg s \equiv T & \text { Re-arranging } \\
((f \wedge b \wedge(f \wedge \neg)) \wedge \neg s \equiv T & \text { Distributive law } \\
((f \wedge b) \vee F) \wedge \neg s \equiv T & \text { Negation law } \\
(f \wedge b) \wedge \neg s \equiv T & \text { Domination law } \\
f \wedge b \wedge \neg s \equiv T & & \text { Associativity of AND }
\end{array}
$$

What if it weren't possible to assign such values to s, b, and f ?

$(\neg s \wedge f) \wedge(\neg b \rightarrow \neg f) \wedge(f \wedge(\neg b \vee \neg s)) \wedge s=T \quad$ Original statement
$(\neg s \wedge f) \wedge(b \vee \neg f) \wedge(f \wedge(\neg b \vee \neg s)) \wedge s=T \quad$ Definition of implication
... (same as previous slide)

$$
(f \wedge b) \wedge \neg s \wedge s=T \quad \text { Domination law }
$$

$$
f \wedge b \wedge \neg S \wedge s=T \quad \text { Re-arranging }
$$

$$
f \wedge b \wedge F=T \quad \text { Negation law }
$$

$$
f \wedge F=T \quad \text { Domination law }
$$

$$
F=T \quad \text { Domination law }
$$

Contradiction!

Functional completenẻes

- All the "extended" operators have equivalences using only the 3 basic operators (and, or, not)
- The extended operators: nand, nor, xor, conditional, bi-conditional
- Given a limited set of operators, can you write an equivalence of the 3 basic operators?
- If so, then that group of operators is functionally complete

Exclusive-Or

How to construct a compound statement for exclusive-or?

p	q	p 目		
T	T	F		
T	F	T		
F	T	T		
F	F	F	\quad	Idea 1: Look at the true rows
:---:				
$(p \wedge \neg q) \vee(\neg p \wedge q)$	\quad	Idea 2: Look at the false rows		
:---:				
$\neg(p \wedge q) \wedge \neg(\neg p \wedge \neg q)$				
Idea 3: Guess and check				

$$
-(p \vee q) \wedge \neg(p \wedge q)
$$

Logical Equivalence

p $\oplus q \equiv(p \vee q) \wedge \neg(p \wedge q)$
p q $p \oplus q$ $p \vee q$ $\neg(p \wedge q)$ a T T F T F F T F T T T T F T T T T T F F F F T F

Logical equivalence: Two statements have the same truth table

Writing Logical Fornuta for a Truth Table
 الْمَــارارة

Given a truth table, how to write a logical formula with the same function?

First write down a small formula for each row, so that the formula is true if the inputs are exactly the same as the row.

Then use idea 1 or idea 2.

	p	q	r	output
$p \wedge q \wedge r$	T	T	T	F
$p \wedge q \wedge \neg r$	T	T	F	T
$p \wedge \neg q \wedge r$	T	F	T	T
$p \wedge \neg q \wedge \neg r$	T	F	F	F
$\vee(\neg p \wedge \dot{\neg} q \wedge \dot{\sim} r)$	F	T	T	T
$\neg p \wedge q \wedge \neg r$	F	T	F	T
$\neg p \wedge \neg q \wedge r$	F	F	T	T
$\neg p \wedge \neg q \wedge \neg r$	F	F	F	F

Idea 1: Look at the true rows and take the "or".

$$
\begin{gathered}
(p \wedge q \wedge \neg r) \\
\vee(p \wedge \neg q \wedge r) \\
\vee(\neg p \wedge q \wedge r) \\
\vee(\neg p \wedge q \wedge \neg r)
\end{gathered}
$$

The formula is true iff the input is one of the true rows.

Writing Logical Fornuta for a Truth Table

Digital logic:

Idea 2: Look at the false rows, negate and take the "and".

$$
\begin{aligned}
& \neg(p \wedge q \wedge r) \\
& \wedge \neg(p \wedge \neg q \wedge \neg r) \\
& \wedge \neg(\neg p \wedge \neg q \wedge \neg r)
\end{aligned}
$$

can be simplified further

The formula is true iff the input
is not one of the false row.

