Predicates and Quantifiers

Epp, Sections 2.1 and 2.2

Termalogy review

- Proposition: a statement that is either true or false
- Must always be one or the other!
- Example: "The sky is red"
- Not a proposition: x+3>4
- Boolean variable: A variable (usually p, q, r, etc.) that represents a proposition

Propostional functions

- Consider $\mathrm{P}(\mathrm{x})=\mathrm{x}<5$
$-P(x)$ has no truth values (x is not given a value)
$-P(1)$ is true
-The proposition $1<5$ is true
$-P(10)$ is false
-The proposition $10<5$ is false
- Thus, $\mathrm{P}(\mathrm{x})$ will create a proposition when given a value

Propositional functions 2

- Let $P(x)=$ " x is a multiple of 5 "
- For what values of x is $P(x)$ true?
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x}+1>\mathrm{x}$
- For what values of x is $P(x)$ true?
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x}+3$
- For what values of x is $P(x)$ true?

Anatomy hof a propositional iffunction

Propositional functions 3

- Functions with multiple variables:
$-P(x, y)=x+y==0$
- $P(1,2)$ is false, $P(1,-1)$ is true
$-P(x, y, z)=x+y==z$
- $P(3,4,5)$ is false, $P(1,2,3)$ is true
$-P\left(x_{1}, x_{2}, x_{3} \ldots x_{n}\right)=\ldots$

So, why do we care about quantifiers?

- Many things (in this course and beyond) are specified using quantifiers
- In some cases, it's a more accurate way to describe things than Boolean propositions

Quantifiers

- A quantifier is "an operator that limits the variables of a proposition"
- Two types:
- Universal
- Existential

Universal quantifiers 1

- Represented by an upside-down A: \forall
- It means "for all"
- Let $P(x)=x+1>x$
- We can state the following:
$\forall x P(x)$
- English translation: "for all values of $x, P(x)$ is true"
- English translation: "for all values of $\mathrm{x}, \mathrm{x}+1>\mathrm{x}$ is true"

Universal quantifiers 2

- But is that always true? $\forall x \mathrm{P}(\mathrm{x})$
- Let $x=$ the character ' a '
- Is ' a ' +1 > ' a '?
- Let $x=$ the state of Virginia
- Is Virginia+1 > Virginia?
- You need to specify your universe!
- What values x can represent
- Called the "domain" or "universe of discourse" by the textbook privar baem

Universal quantifiers 3

- Let the universe be the real numbers.
- Then, $\forall x \mathrm{P}(\mathrm{x})$ is true
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x} / 2<\mathrm{x}$
- Not true for the negative numbers!
- Thus, $\forall x P(x)$ is false -When the domain is all the real numbers
- In order to prove that a universal quantification is true, it must be shown for ALL cases
- In order to prove that a universal quantification is false, it must be shown to be false for only ONE case

Universaquantification 4

- Given some propositional function $\mathrm{P}(\mathrm{x})$
- And values in the universe x_{1}.. x_{n}
- The universal quantification $\forall x \mathrm{P}(\mathrm{x})$ implies:

$$
P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \ldots \wedge P\left(x_{n}\right)
$$

Universalequantification 5

- Think of \forall as a for loop:
$\forall \forall \mathrm{xP}(\mathrm{x})$, where $1 \leq \mathrm{x} \leq 10$
- ... can be translated as ...

$$
\begin{aligned}
& \text { for (} x=1 ; x<=10 ; x++ \text {) } \\
& \text { is } P(x) \text { true? }
\end{aligned}
$$

- If $\mathrm{P}(\mathrm{x})$ is true for all parts of the for loop, then $\forall \mathrm{x} P(\mathrm{x})$
- Consequently, if $P(x)$ is false for any one value of the for loop, then $\forall x P(x)$ is false

Existential quantification
 1

- Represented by an bacwards E: \exists
- It means "there exists"
- Let $P(x)=x+1>x$
- We can state the following: $\exists x P(x)$
- English translation: "there exists (a value of) x such that $P(x)$ is true"
- English translation: "for at least one value of $x, x+1>x$ is true"

Existential quantification
 管化 2

- Note that you still have to specify your universe
- If the universe we are talking about is all the states in the US, then $\exists x \mathrm{P}(\mathrm{x})$ is not true
- Let $\mathrm{P}(\mathrm{x})=\mathrm{x}+1<\mathrm{x}$
- There is no numerical value x for which $x+1<x$
- Thus, $\exists x P(x)$ is false

Existential quantification
 解 3

- Let $P(x)=x+1>x$
- There is a numerical value for which $x+1>x$
-In fact, it's true for all of the values of x !
- Thus, $\exists x P(x)$ is true
- In order to show an existential quantification is true, you only have to find ONE value
- In order to show an existential quantification is false, you have to show it's false for ALL values

Existential quantification
 R 4

- Given some propositional function $\mathrm{P}(\mathrm{x})$
- And values in the universe x_{1}.. x_{n}
- The existential quantification $\exists x \mathrm{P}(\mathrm{x})$ implies:

$$
P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \ldots \vee P\left(x_{n}\right)
$$

A note quantifiers

- Recall that $P(x)$ is a propositional function
- Let $P(x)$ be " $x=0$ "
- Recall that a proposition is a statement that is either true or false
$-P(x)$ is not a proposition
- There are two ways to make a propositional function into a proposition:
- Supply it with a value
-For example, $\mathrm{P}(5)$ is false, $\mathrm{P}(0)$ is true
- Provide a quantifiaction
-For example, $\forall x \mathrm{P}(\mathrm{x})$ is false and $\exists \mathrm{x}(\mathrm{x})$ is true
-Let the universe of discourse be the real numbers

Binding variables

- Let $P(x, y)$ be $x>y$
- Consider: $\forall x \mathrm{P}(\mathrm{x}, \mathrm{y})$
- This is not a proposition!
- What is y ?
-If it's 5 , then $\forall x P(x, y)$ is false
-If it's $x-1$, then $\forall x P(x, y)$ is true
- Note that y is not "bound" by a quantifier

Bindig variables 2

- $(\exists x P(x)) \vee Q(x)$
- The x in $Q(x)$ is not bound; thus not a proposition
- $(\exists x P(x)) \vee(\forall x Q(x))$
- Both x values are bound; thus it is a proposition
- $(\exists x P(x) \wedge Q(x)) \vee(\forall y R(y))$
- All variables are bound; thus it is a proposition
- $(\exists x P(x) \wedge Q(y)) \vee(\forall y R(y))$
- The y in $Q(y)$ is not bound; this not a proposition

Negating quantifications

- Consider the statement:
- All students in this class have red hair
- What is required to show the statement is false?
- There exists a student in this class that does NOT have red hair
- To negate a universal quantification:
- You negate the propositional function
- AND you change to an existential quantification
$-\neg \forall x P(x)=\exists x \neg P(x)$

Negating quantifications 2

- Consider the statement:
- There is a student in this class with red hair
- What is required to show the statement is false?
- All students in this class do not have red hair
- Thus, to negate an existential quantification:
- Tou negate the propositional function
- AND you change to a universal quantification

Translating from English

- Consider "For every student in this class, that student has studied calculus"
- Rephrased: "For every student x in this class, x has studied calculus"
- Let C(x) be "x has studied calculus"
- Let $S(x)$ be " x is a student"
$\forall \forall x$ C(x)
- True if the universe of discourse is all students in this class

Translating from English 2

- What about if the unvierse of discourse is all students (or all people?)
$\forall x(S(x) \wedge C(x))$
-This is wrong! Why? $\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{C}(\mathrm{x}))$
- Another option:
- Let $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ be " x has stuided y "
$\forall x(S(x) \rightarrow Q(x$, calculus $))$

Translating fro

- Consider:
- "Some students have visited Mexico"
- "Every student in this class has visited Canada or Mexico"
- Let:
$-S(x)$ be " x is a student in this class"
$-\mathrm{M}(\mathrm{x})$ be "x has visited Mexico"
$-C(x)$ be "x has visited Canada"

Translating from English) 4

- Consider: "Some students have visited Mexico"
- Rephrasing: "There exists a student who has visited Mexico"
$\forall \exists x \mathrm{M}(\mathrm{x})$
- True if the universe of discourse is all students
- What about if the universe of discourse is all people?
$\exists x(S(x) \rightarrow M(x))$
-This is wrong! Why?
$\exists x(S(x) \wedge M(x))$

Translating from English

- Consider: "Every student in this class has visited Canada or Mexico"
$\forall \forall x(M(x) \vee C(x)$
- When the universe of discourse is all students
$\forall \forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \rightarrow(\mathrm{M}(\mathrm{x}) \vee \mathrm{C}(\mathrm{x}))$
- When the universe of discourse is all people
- Why isn't $\forall x(\mathrm{~S}(\mathrm{x}) \wedge(\mathrm{M}(\mathrm{x}) \vee \mathrm{C}(\mathrm{x})))$ correct?

Translating from English
 dubi 6

- Note that it would be easier to define $\mathrm{V}(\mathrm{x}, \mathrm{y})$ as " x has visited y "
$\forall x(S(x) \wedge V(x, M e x i c o))$
$\forall x(S(x) \rightarrow(\mathrm{V}(\mathrm{x}, \mathrm{Mexico}) \vee \mathrm{V}(\mathrm{x}$, Canada $))$

Translating from English 흔ํํ 7

- Translate the statements:
- "All hummingbirds are richly colored"
- "No large birds live on honey"
- "Birds that do not live on honey are dull in color"
- "Hummingbirds are small"
- Assign our propositional functions
- Let $P(x)$ be " x is a hummingbird"
- Let $Q(x)$ be " x is large"
- Let $R(x)$ be "x lives on honey"
- Let $S(x)$ be "x is richly colored"
- Let our universe of discourse be all birds

Translating from English
 الْمَــامعارة 8

- Our propositional functions
- Let $P(x)$ be " x is a hummingbird"
- Let $Q(x)$ be " x is large"
- Let $R(x)$ be "x lives on honey"
- Let $S(x)$ be "x is richly colored"
- Translate the statements:
- "All hummingbirds are richly colored"

$$
\forall \forall x(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x}))
$$

- "No large birds live on honey"
$\bullet \neg \exists x(Q(x) \wedge R(x))$
-Alternatively: $\forall x(\neg Q(x) \vee \neg R(x))$
- "Birds that do not live on honey are dull in color"
$\forall \forall x(\neg R(x) \rightarrow \neg S(x))$
- "Hummingbirds are small"
- A programming language using logic!
- Entering facts:
instructor (bloomfield, cs202)
enrolled (alice, cs202)
enrolled (bob, cs202)
enrolled (claire, cs202)
- Entering predicates:
teaches (P, S) :- instructor (P, C), enrolled (S, C)
- Extracting data
?enrolled (alice, cs202)
-Result:
yes

Prolog 2

- Extracting data ?enro11ed (X, cs202)
-Result:
alice
bob
claire
- Extracting data
?teaches ($\mathrm{X}, \mathrm{alice}$)
-Result:
bloomfield

Multiple quantifiers

- You can have multiple quantifiers on a statement
$\forall \forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y})$
- "For all x, there exists a y such that $P(x, y)$ "
- Example: $\forall x \exists y$ ($x+y==0)$
$\forall \exists x \forall y \mathrm{P}(\mathrm{x}, \mathrm{y})$
- There exists an x such that for all $y \mathrm{P}(x, y)$ is true"
- Example: $\exists x \forall y\left(x^{*} y==0\right)$

Orde quantifiers

$\forall \exists \mathrm{x} \forall \mathrm{y}$ and $\forall \mathrm{x} \exists \mathrm{y}$ are not equivalent!

$\forall \exists x \forall y P(x, y)$
$-P(x, y)=(x+y==0)$ is false
$\forall \forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y})$
$-P(x, y)=(x+y==0)$ is true

Negeting multiple quantifiers

- Recall negation rules for single quantifiers:
$-\neg \forall x P(x)=\exists x \neg P(x)$
$-\neg \exists x P(x)=\forall x \neg P(x)$
- Essentially, you change the quantifier(s), and negate what it's quantifying
- Examples:

$$
\begin{aligned}
- & \neg(\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y})) \\
= & \exists \mathrm{x} \neg \exists \mathrm{yP}(\mathrm{x}, \mathrm{y}) \\
& =\exists \mathrm{x} \forall \mathrm{y} \neg \mathrm{P}(\mathrm{x}, \mathrm{y}) \\
- & \neg(\forall \mathrm{x} \exists \mathrm{y} \forall \mathrm{z} \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})) \\
& =\exists \mathrm{x} \neg \exists \mathrm{y} \forall \mathrm{zP}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& =\exists \mathrm{x} \forall \mathrm{y} \neg \forall \mathrm{z}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& =\exists \mathrm{x} \forall \mathrm{y} \exists \mathrm{z} \neg \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})
\end{aligned}
$$

Negating multiple qưantifiers 2

- Consider $\neg(\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y}))=\exists \mathrm{x} \forall \mathrm{y} \neg \mathrm{P}(\mathrm{x}, \mathrm{y})$
- The left side is saying "for all x, there exists a y such that P is true"
- To disprove it (negate it), you need to show that "there exists an x such that for all y, P is false"
- Consider $\neg(\exists x \forall y P(x, y))=\forall x \exists y \neg P(x, y)$
- The left side is saying "there exists an x such that for all y , P is true"
- To disprove it (negate it), you need to show that "for all x, there exists a y such that P is false"

Translatingbetween English andquantifiers

- The product of two negative integers is positive $\forall x \forall y((x<0) \wedge(y<0) \rightarrow(x y>0))$
- Why conditional instead of and?
- The average of two positive integers is positive $\forall x \forall y((x>0) \wedge(y>0) \rightarrow((x+y) / 2>0))$
- The difference of two negative integers is not necessarily negative $\exists x \exists y((x<0) \wedge(y<0) \wedge(x-y \geq 0))$
- Why and instead of conditional?
- The absolute value of the sum of two integers does not exceed the sum of the absolute values of these integers

Translatingbetween English andquantifiers

$\forall \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x}+\mathrm{y}=\mathrm{y})$

- There exists an additive identity for all real numbers
$\forall \forall x \forall y(((x \geq 0) \wedge(y<0)) \rightarrow(x-y>0))$
- A non-negative number minus a negative number is greater than zero
$\forall \exists x \exists y(((x \leq 0) \wedge(y \leq 0)) \wedge(x-y>0))$
- The difference between two non-positive numbers is not necessarily non-positive (i.e. can be positive)
$\forall \forall x \forall y(((x \neq 0) \wedge(y \neq 0)) \leftrightarrow(x y \neq 0))$
- The product of two non-zero numbers is non-zero if and only if both factorfachemen-zero

Negation examples

- Rewrite these statements so that the negations only appear within the predicates

$$
\text { a) } \begin{aligned}
& \neg \exists y \exists x P(x, y) \\
0 & \forall y \neg \exists x P(x, y) \\
\bullet & \forall y \forall x \neg P(x, y)
\end{aligned}
$$

ß) $\neg \forall x \exists y P(x, y)$

- $\exists x \neg \exists y P(x, y)$
- $\exists x \forall y \neg P(x, y)$
$\chi) ~ \neg \exists \mathrm{y}(\mathrm{Q}(\mathrm{y}) \wedge \forall \mathrm{x} \neg \mathrm{R}(\mathrm{x}, \mathrm{y}))$
- $\forall \mathrm{y} \neg(\mathrm{Q}(\mathrm{y}) \wedge \forall \mathrm{x} \neg \mathrm{R}(\mathrm{x}, \mathrm{y}))$
- $\forall \mathrm{y}(\neg \mathrm{Q}(\mathrm{y}) \vee \neg(\forall \mathrm{x} \neg \mathrm{R}(\mathrm{x}, \mathrm{y})))$
- $\forall y(\neg Q(y) \vee \exists x R(x, y))$

Negation examples

- Express the negations of each of these statements so that all negation symbols immediately precede predicates.
a) $\quad \forall x \exists y \forall z T(x, y, z)$
- $\quad \neg(\forall x \exists y \forall z T(x, y, z))$
- $\quad \neg \forall x \exists y \forall z T(x, y, z)$
- $\exists x \neg \exists y \forall z T(x, y, z)$
- $\exists x \forall y \neg \forall z T(x, y, z)$
- $\quad \exists x \forall y \exists z \neg T(x, y, z)$

乃) $\quad \forall x \exists y P(x, y) \vee \forall x \exists y Q(x, y)$

- $\quad \neg(\forall x \exists y P(x, y) \vee \forall x \exists y Q(x, y))$
- $\neg \forall x \exists y P(x, y) \wedge \neg \forall x \exists y Q(x, y)$
- $\exists x \neg \exists y P(x, y) \wedge \exists x \neg \exists y Q(x, y)$
- $\quad \exists x \forall y \neg P(x, y) \wedge \exists x \forall y \neg Q(x, y)$

Rules ofinference for the universal quantifier

- Assume that we know that $\forall x P(x)$ is true
- Then we can conclude that $\mathrm{P}(\mathrm{c})$ is true
-Here c stands for some specific constant
- This is called "universal instantiation"
- Assume that we know that $\mathrm{P}(\mathrm{c})$ is true for any value of c
- Then we can conclude that $\forall x \mathrm{P}(\mathrm{x})$ is true - This is called "universal generalization"

Rules oinference for the existential quantifier

- Assume that we know that $\exists x \mathrm{P}(\mathrm{x})$ is true
- Then we can conclude that $P(c)$ is true for some value of c
- This is called "existential instantiation"
- Assume that we know that $\mathrm{P}(\mathrm{c})$ is true for some value of c
- Then we can conclude that $\exists x \mathrm{P}(\mathrm{x})$ is true
- This is called "existential generalization"

Example of proof

- Given the hypotheses:
- "Linda, a student in this class, owns a red convertible."
- "Everybody who owns a red convertible has gotten at least one speeding ticket"
$\forall x(R(x) \rightarrow T(x))$
- Can you conclude: "Somebody in this class has gotten a speeding ticket"?

Example of proof

1. $\forall x(R(x) \rightarrow T(x))$
2. $R($ Linda $) \rightarrow T($ Linda $)$
3. R (Linda)
4. T(Linda)
5. C(Linda)
6. $\quad \mathrm{C}($ Linda $) \wedge \mathrm{T}($ Linda $)$
7. $\exists x(C(x) \wedge T(x))$
$3^{\text {rd }}$ hypothesis
Universal instantiation using step 1
$2^{\text {nd }}$ hypothesis
Modes ponens using steps 2 \& 3 $1^{\text {st }}$ hypothesis
Conjunction using steps 4 \& 5
Existential generalization using step 6

Thus, we have shown that "Somebody in this class has gotten a speeding ticket"

Example of proof

- Given the hypotheses:
- "There is someone in this class $\exists \mathrm{x}(\mathrm{C}(\mathrm{x}) \wedge \mathrm{F}(\mathrm{x}))$ who has been to France"
- "Everyone who goes to France $\quad \forall x(F(x) \rightarrow L(x))$ visits the Louvre"
- Can you conclude: "Someone

$$
工
$$ in this class has visited the Louvre"?

$$
\begin{aligned}
& \exists x(C(x) \wedge F(x)) \\
& \forall x(F(x) \rightarrow L(x))
\end{aligned}
$$

$$
\exists x(C(x) \wedge L(x))
$$

Example of proof

1. $\exists x(C(x) \wedge F(x))$
2. $\mathrm{C}(\mathrm{y}) \wedge \mathrm{F}(\mathrm{y})$
3. $\mathrm{F}(\mathrm{y})$
4. $\mathrm{C}(\mathrm{y})$
5. $\forall x(F(x) \rightarrow L(x))$
6. $\mathrm{F}(\mathrm{y}) \rightarrow \mathrm{L}(\mathrm{y})$
7. $\mathrm{L}(\mathrm{y})$
8. $\mathrm{C}(\mathrm{y}) \wedge \mathrm{L}(\mathrm{y})$
9. $\exists x(C(x) \wedge L(x))$
$1^{\text {st }}$ hypothesis
Existential instantiation using step 1
Simplification using step 2
Simplification using step 2 $2^{\text {nd }}$ hypothesis
Universal instantiation using step 5 Modus ponens using steps 3 \& 6 Conjunction using steps 4 \& 7
Existential generalization using step 8

Thus, we have shown that "Someone in this class has visited the Louvre"

