
4/12/2023

1

https://manara.edu.sy/

Chapter 9 – Pointers

1

https://manara.edu.sy/

9.1 Getting the address of a Variable
• The address operator (&) returns the memory address of a variable.

2

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

2

https://manara.edu.sy/

Figure 9-1

3

1200 1201 1203

letter number amount

https://manara.edu.sy/

Program 9-1

// This program uses the & operator to determine a variable’s

// address and the sizeof operator to determine its size.

#include <iostream.h>

void main(void)

{

int x = 25;

cout << "The address of x is " << &x << endl;

cout << "The size of x is " << sizeof(x) << " bytes\n";

cout << "The value in x is " << x << endl;

}

4

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

3

https://manara.edu.sy/

Program Output

The address of x is 0x8f05

The size of x is 2 bytes

The value in x is 25

5

https://manara.edu.sy/

Pointer Variables

• Pointer variables, which are often just called pointers, are designed
to hold memory addresses. With pointer variables you can indirectly
manipulate data stored in other variables.

6

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

4

https://manara.edu.sy/

Pointers are useful for the following:

• Working with memory locations that regular variables don’t give you
access to

• Working with strings and arrays

• Creating new variables in memory while the program is running

• Creating arbitrarily-sized lists of values in memory

7

https://manara.edu.sy/

Program 9-2

// This program stores the address of a variable in a pointer.

#include <iostream.h>

void main(void)

{

int x = 25;

int *ptr;

ptr = &x; // Store the address of x in ptr

cout << "The value in x is " << x << endl;

cout << "The address of x is " << ptr << endl;

}

8

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

5

https://manara.edu.sy/

Program Output

The value in x is 25

The address of x is 0x7e00

9

https://manara.edu.sy/

Figure 9-2

10

0x7e00

25

ptr

x

Address of x: 0x7e00

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

6

https://manara.edu.sy/

Program 9-3
// This program demonstrates the use of the indirection

// operator.

#include <iostream.h>

void main(void)

{

int x = 25;

int *ptr;

ptr = &x; // Store the address of x in ptr

cout << "Here is the value in x, printed twice:\n";

cout << x << " " << *ptr << endl;

*ptr = 100;

cout << "Once again, here is the value in x:\n";

cout << x << " " << *ptr << endl;

}

11

https://manara.edu.sy/

Program Output

Here is the value in x, printed twice:

25 25

Once again, here is the value in x:

100 100

12

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

7

https://manara.edu.sy/

Program 9-4

#include <iostream>

void main(void)

{

int x = 25, y = 50, z = 75;

int *ptr;

cout << "Here are the values of x, y, and z:\n";

cout << x << " " << y << " " << z << endl;

ptr = &x; // Store the address of x in ptr

*ptr *= 2; // Multiply value in x by 2

ptr = &y; // Store the address of y in ptr

*ptr *= 2; // Multiply value in y by 2

ptr = &z; // Store the address of z in ptr

*ptr *= 2; // Multiply value in z by 2

cout << "Once again, here are the values of x, y, and z:\n";

cout << x << " " << y << " " << z << endl;

}

13

https://manara.edu.sy/

Program Output

Here are the values of x, y, and z:

25 50 75

Once again, here are the values of x, y , and z:

50 100 150

14

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

8

https://manara.edu.sy/

9.3 Relationship Between Arrays and Pointers

• array names can be used as pointers, and vice-versa.

15

https://manara.edu.sy/

Program 9-5

// This program shows an array name being dereferenced

// with the * operator.

#include <iostream.h>

void main(void)

{

short numbers[] = {10, 20, 30, 40, 50};

cout << "The first element of the array is ";

cout << *numbers << endl;

}

16

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

9

https://manara.edu.sy/

Program Output

The first element in the array is 10

17

https://manara.edu.sy/

Figure 9-3

18

numbers

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

10

https://manara.edu.sy/

Figure 9-4

19

numbers

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

(numbers+1) (numbers+2) (numbers+3) (numbers+4)

https://manara.edu.sy/

Program 9-6

// This program processes the contents of an array. Pointer

// notation is used.

#include <iostream.h>

void main(void)

{

int numbers[5];

cout << "Enter five numbers: ";

for (int count = 0; count < 5; count++)

cin >> *(numbers + count);

cout << "Here are the numbers you entered:\n";

for (int count = 0; count < 5; count++)

cout << *(numbers + count)<< " ";

cout << endl;

}

20

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

11

https://manara.edu.sy/

Program Output with Example Input

Enter five numbers: 5 10 15 20 25 [Enter]

Here are the numbers you entered:

5 10 15 20 25

21

https://manara.edu.sy/

Program 9-7
// This program uses subscript notation with a pointer and

// pointer notation with an array name.

#include <iostream.h>

void main(void)

{

float coins[5] = {0.05, 0.1, 0.25, 0.5, 1.0};

float *floatPtr; // Pointer to a float

int count; // array index

floatPtr = coins; // floatPtr now points to coins array

cout.precision(2);

cout << "Here are the values in the coins array:\n";

22

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

12

https://manara.edu.sy/

Program continues

for (count = 0; count < 5; count++)

cout << floatPtr[count] << " ";

cout << "\nAnd here they are again:\n";

for (count = 0; count < 5; count++)

cout << *(coins + count) << " ";

cout << endl;

}

23

https://manara.edu.sy/

Program Output

Here are the values in the coins array:

0.05 0.1 0.25 0.5 1

And here they are again:

0.05 0.1 0.25 0.5 1

24

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

13

https://manara.edu.sy/

Program 9-8

// This program uses the address of each element in
the array.

#include <iostream.h>

#include <iomanip.h>

void main(void)

{

float coins[5] = {0.05, 0.1, 0.25, 0.5, 1.0};

float *floatPtr; // Pointer to a float

int count; // array index

cout.precision(2);

cout << "Here are the values in the coins array:\n";

25

https://manara.edu.sy/

Program continues

for (count = 0; count < 5; count++)

{

floatPtr = &coins[count];

cout << *floatPtr << " ";

}

cout << endl;

}

26

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

14

https://manara.edu.sy/

Program Output

Here are the values in the coins array:

0.05 0.1 0.25 0.5 1

27

https://manara.edu.sy/

9.4 Pointer Arithmetic

• Some mathematical operations may be performed on pointers.
• The ++ and – operators may be used to increment or decrement a pointer

variable.

• An integer may be added to or subtracted from a pointer variable. This may
be performed with the +, - +=, or -= operators.

• A pointer may be subtracted from another pointer.

28

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

15

https://manara.edu.sy/

Program 9-9
// This program uses a pointer to display the contents

// of an integer array.

#include <iostream.h>

void main(void)

{

int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int *nums, index;

nums = set;

cout << "The numbers in set are:\n";

for (index = 0; index < 8; index++)

{

cout << *nums << " ";

nums++;

}

29

https://manara.edu.sy/

Program continues

cout << "\nThe numbers in set backwards are:\n";

for (index = 0; index < 8; index++)

{

nums--;

cout << *nums << " ";

}

}

30

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

16

https://manara.edu.sy/

Program Output

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backwards are:

40 35 30 25 20 15 10 5

31

https://manara.edu.sy/

9.5 Initializing Pointers

• Pointers may be initialized with the address of an existing object.

32

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

17

https://manara.edu.sy/

9.6 Comparing Pointers

• If one address comes before another address in memory, the first
address is considered “less than” the second. C++’s relational
operators maybe used to compare pointer values.

33

https://manara.edu.sy/

Figure 9-5

34

0x5A00

array[0] array[1] array[2] array[3] array[4]

0x5A04 0x5A08 0x5A0C 0x5A0F

(Addresses)

An array of five integers

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

18

https://manara.edu.sy/

Program 9-10

// This program uses a pointer to display the contents

// of an integer array.

#include <iostream.h>

void main(void)

{

int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int *nums = set; // Make nums point to set

cout << "The numbers in set are:\n";

cout << *nums << " "; // Display first element

while (nums < &set[7])

{

nums++;

cout << *nums << " ";

}

35

https://manara.edu.sy/

Program continues

cout << "\nThe numbers in set backwards are:\n";

cout << *nums << " "; // Display last element

while (nums > set)

{

nums--;

cout << *nums << " ";

}

}

36

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

19

https://manara.edu.sy/

Program Output

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backwards are:

40 35 30 25 20 15 10 5

37

https://manara.edu.sy/

9.7 Pointers as Function Parameters

• A pointer can be used as a function parameter. It gives the function
access to the original argument, much like a reference parameter
does.

38

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

20

https://manara.edu.sy/

Program 9-11

// This program uses two functions that accept addresses of

// variables as arguments.

#include <iostream.h>

// Function prototypes

void getNumber(int *);

void doubleValue(int *);

void main(void)

{

int number;

getNumber(&number) // Pass address of number to getNumber

doubleValue(&number); // and doubleValue.

cout << "That value doubled is " << number << endl;

}

39

https://manara.edu.sy/

Program continues

// Definition of getNumber. The parameter, Input, is a pointer.

// This function asks the user for a number. The value entered

// is stored in the variable pointed to by Input.

void getNumber(int *input)

{

cout << "Enter an integer number: ";

cin >> *input;

}

// Definition of doubleValue. The parameter, val, is a pointer.

// This function multiplies the variable pointed to by val by

// two.

void doubleValue(int *val)

{

*val *= 2;

}

40

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

21

https://manara.edu.sy/

Program Output with Example Input

Enter an integer number: 10 [Enter]

That value doubled is 20

41

https://manara.edu.sy/

Program 9-12

// This program demonstrates that a pointer may be used as a

// parameter to accept the address of an array. Either subscript

// or pointer notation may be used.

#include <iostream.h>

#include <iomanip.h>

// Function prototypes

void getSales(float *);

float totalSales(float *);

void main(void)

{

float sales[4];

getSales(sales);

cout.precision(2);

42

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

22

https://manara.edu.sy/

Program continues

cout.setf(ios::fixed | ios::showpoint);

cout << "The total sales for the year are $";

cout << totalSales(sales) << endl;

}

// Definition of getSales. This function uses a pointer to accept

// the address of an array of four floats. The function asks the

// user to enter the sales figures for four quarters, and stores

// those figures in the array. (The function uses subscript

// notation.)

void getSales(float *array)

{

for (int count = 0; count < 4; count++)

{

cout << "Enter the sales figure for quarter ";

cout << (count + 1) << ": ";

cin >> array[count];

}

}

43

https://manara.edu.sy/

Program continues

// Definition of totalSales. This function uses a pointer to

// accept the address of an array of four floats. The function

// gets the total of the elements in the array and returns that

// value. (Pointer notation is used in this function.)

float totalSales(float *array)

{

float sum = 0.0;

for (int count = 0; count < 4; count++)

{

sum += *array;

array++;

}

return sum;

}

44

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

23

https://manara.edu.sy/

Program Output with Example Input

Enter the sales figure for quarter 1: 10263.98 [Enter]

Enter the sales figure for quarter 2: 12369.69 [Enter]

Enter the sales figure for quarter 3: 11542.13 [Enter]

Enter the sales figure for quarter 4: 14792.06 [Enter]

The total sales for the year are $48967.86

45

https://manara.edu.sy/

9.8 Focus on Software Engineering: Dynamic
Memory Allocation

• Variables may be created and destroyed while a program is running.

• A pointer than contains the address 0 is called a null pointer.

• Use the new operator to dynamically allocate memory.

• Use delete to dynamically deallocate memory.

46

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

24

https://manara.edu.sy/

Program 9-13
// This program totals and averages the sales figures for any

// number of days. The figures are stored in a dynamically

// allocated array.

#include <iostream.h>

#include <iomanip.h>

void main(void)

{

float *sales, total = 0, average;

int numDays;

cout << "How many days of sales figures do you wish ";

cout << "to process? ";

cin >> numDays;

sales = new float[numDays]; // Allocate memory

47

https://manara.edu.sy/

Program continues

if (sales == NULL) // Test for null pointer

{

cout << "Error allocating memory!\n";

return;

}

// Get the sales figures from the user

cout << "Enter the sales figures below.\n";

for (int count = 0; count < numDays; count++)

{

cout << "Day " << (count + 1) << ": ";

cin >> sales[count];

}

// Calculate the total sales

for (count = 0; count < numDays; count++)

{

total += sales[count];

}

48

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

25

https://manara.edu.sy/

Program continues

// Calculate the average sales per day

average = total / numDays;

// Display the results

cout.precision(2);

cout.setf(ios::fixed | ios::showpoint);

cout << "\n\nTotal sales: $" << total << endl;

cout << "average sales: $" << average << endl;

// Free dynamically allocated memory

delete [] sales;

}

49

https://manara.edu.sy/

Program Output with Example Input

How many days of sales figures do you wish to process? 5 [Enter]

Enter the sales figures below.

Day 1: 898.63 [Enter]

Day 2: 652.32 [Enter]

Day 3: 741.85 [Enter]

Day 4: 852.96 [Enter]

Day 5: 921.37 [Enter]

total sales: $4067.13

average sales: $813.43

50

https://manara.edu.sy/
https://manara.edu.sy/

4/12/2023

26

https://manara.edu.sy/

9.9 Focus on Software Engineering:
Returning Pointers from Functions

• Functions can return pointers, but you must be sure the object the
pointer references still exists.

• You should only return a pointer from a function if it is:
• A pointer to an object that was passed into the function as an argument.

• A pointer to a dynamically allocated object.

51

https://manara.edu.sy/

	Slide 1: Chapter 9 – Pointers
	Slide 2: 9.1 Getting the address of a Variable
	Slide 3: Figure 9-1
	Slide 4: Program 9-1
	Slide 5: Program Output
	Slide 6: Pointer Variables
	Slide 7: Pointers are useful for the following:
	Slide 8: Program 9-2
	Slide 9: Program Output
	Slide 10: Figure 9-2
	Slide 11: Program 9-3
	Slide 12: Program Output
	Slide 13: Program 9-4
	Slide 14: Program Output
	Slide 15: 9.3 Relationship Between Arrays and Pointers
	Slide 16: Program 9-5
	Slide 17: Program Output
	Slide 18: Figure 9-3
	Slide 19: Figure 9-4
	Slide 20: Program 9-6
	Slide 21: Program Output with Example Input
	Slide 22: Program 9-7
	Slide 23: Program continues
	Slide 24: Program Output
	Slide 25: Program 9-8
	Slide 26: Program continues
	Slide 27: Program Output
	Slide 28: 9.4 Pointer Arithmetic
	Slide 29: Program 9-9
	Slide 30: Program continues
	Slide 31: Program Output
	Slide 32: 9.5 Initializing Pointers
	Slide 33: 9.6 Comparing Pointers
	Slide 34: Figure 9-5
	Slide 35: Program 9-10
	Slide 36: Program continues
	Slide 37: Program Output
	Slide 38: 9.7 Pointers as Function Parameters
	Slide 39: Program 9-11
	Slide 40: Program continues
	Slide 41: Program Output with Example Input
	Slide 42: Program 9-12
	Slide 43: Program continues
	Slide 44: Program continues
	Slide 45: Program Output with Example Input
	Slide 46: 9.8 Focus on Software Engineering: Dynamic Memory Allocation
	Slide 47: Program 9-13
	Slide 48: Program continues
	Slide 49: Program continues
	Slide 50: Program Output with Example Input
	Slide 51: 9.9 Focus on Software Engineering: Returning Pointers from Functions

