Calculus 1

Dr. Yamar Hamwi

Al-Manara University

2022-2023

Calculus 1

Lecture 1

Functions

Chapter 1 Functions

1.1 Functions and Their Graphs

1.2 Some Important Functions

Functions

introduction

The temperature at which water boils depends on the elevation above sea level. The interest paid on a cash investment depends on the length of time the investment is held. The area of a circle depends on the radius of the circle. The distance an object travels depends on the elapsed time.
In each case, the value of one variable quantity, say y, depends on the value of another variable quantity, which we often call x. We say that " y is a function of x " and write this symbolically as

$$
y=f(x) \quad(" y \text { equals } f \text { of } x ") .
$$

The symbol f represents the function, the letter x is the independent variable representing the input value to f, and y is the dependent variable or output value of f at x.

Functions

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique value $f(x)$ in Y to each x in D.

FIGURE 1.1 A diagram showing a function as a kind of machine.

It's helpful to think of a function as a machine (see Figure 1.1)

Functions

The domain of f is the set X.
The number y is the image of x under f and is denoted by $f(x)$, which is called the value of at The range of is a subset of Y and consists of all images of numbers in (s

f : is a function

x : is element in the domain $f(x)$: is called the value of the function at x

FIGURE 1.2 A function from a set D to a set Y assigns a unique element of Y to each element in D.

Functions

EXAMPLE 3 Evaluating a Function Let f be the function with domain all real numbers x and defined by the formula

$$
f(x)=3 x^{3}-4 x^{2}-3 x+7
$$

Find $f(2)$ and $f(-2)$.

SOLUTION To find $f(2)$, we substitute 2 for every occurrence of x in the formula for $f(x)$:

$$
\begin{aligned}
f(2) & =3(2)^{3}-4(2)^{2}-3(2)+7 & & \text { Substitute } 2 \text { for } x . \\
& =3(8)-4(4)-3(2)+7 & & \text { Evaluate exponents. } \\
& =24-16-6+7 & & \text { Multiply. } \\
& =9 . & & \text { Add and subtract. }
\end{aligned}
$$

To find $f(-2)$, we substitute (-2) for each occurrence of x in the formula for $f(x)$. The parentheses ensure that the -2 is substituted correctly. For instance, x^{2} must be replaced by $(-2)^{2}$, not -2^{2} :

$$
\begin{array}{rlrl}
f(-2) & =3(-2)^{3}-4(-2)^{2}-3(-2)+7 \\
& =3(-8)-4(4)-3(-2)+7 & & \text { Substitute }(-2) \text { for } x . \\
& =-24-16+6+7 & & \text { Evaluate exponents. } \\
& =-27 . & & \text { Multiply. } \\
& & \text { Add and subtract. }
\end{array}
$$

Functions

EXAMPLE Evaluating a Function If $f(x)=(4-x) /\left(x^{2}+3\right)$, what is (a) $f(a) ?(\mathrm{~b}) f(a+1)$?

SOLUTION (a) Here, a represents some number. To find $f(a)$, we substitute a for x wherever x appears in the formula defining $f(x)$:

$$
f(a)=\frac{4-a}{a^{2}+3} .
$$

(b) To evaluate $f(a+1)$, substitute $a+1$ for each occurrence of x in the formula for $f(x)$:

$$
f(a+1)=\frac{4-(a+1)}{(a+1)^{2}+3} .
$$

We can simplify the expression for $f(a+1)$ using the fact that $(a+1)^{2}=$ $(a+1)(a+1)=a^{2}+2 a+1$:

Expand Add and Subtract

$$
f(a+1)=\frac{4-(a+1)}{(a+1)^{2}+3}=\frac{4-a-1}{a^{2}+2 a+1+3}=\frac{3-a}{a^{2}+2 a+4} .
$$

Functions

EXAMPLE 7 Domains of Functions Find the domains of the following functions:
(a) $f(x)=\sqrt{4+x}$
(b) $g(x)=\frac{1}{\sqrt{1+2 x}}$
(c) $h(x)=\sqrt{1+x}-\sqrt{1-x}$

SOLUTION (a) Since we cannot take the square root of a negative number, we must have $4+x \geq 0$, or equivalently, $x \geq-4$. So the domain of f is $[-4, \infty)$.
(b) Here, the domain consists of all x for which

$$
\begin{aligned}
1+2 x & >0 & & \\
2 x & >-1 & & \text { Subtract } 1 \text { from both sides. } \\
x & >-\frac{1}{2} & & \text { Divide both sides by } 2 .
\end{aligned}
$$

The domain is the open interval $\left(-\frac{1}{2}, \infty\right)$.
(c) In order to be able to evaluate both square roots that appear in the expression of $h(x)$, we must have

$$
1+x \geq 0 \quad \text { and } \quad 1-x \geq 0
$$

The first inequality is equivalent to $x \geq-1$, and the second inequality to $x \leq 1$. Since x must satisfy both inequalities, it follows that the domain of h consists of the closed interval $[-1,1]$.

Functions: Domain and Range

EXAMPLE 1 Verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of x for which the formula makes sense.

Function	Domain (x)	Range (y)
$y=x^{2}$	$(-\infty, \infty)$	$[0, \infty)$
$y=1 / x$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y=\sqrt{4-x}$	$(-\infty, 4]$	$[0, \infty)$
$y=\sqrt{1-x^{2}}$	$[-1,1]$	$[0,1]$

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$
\{(x, f(x)) \mid x \in D\} .
$$

Graphs of Functions

EXAMPLE 2 Graph the function $y=x^{2}$ over the interval $[-2,2]$.

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{x}^{2}$
-2	4
-1	1
0	0
1	1
$\frac{3}{2}$	$\frac{9}{4}$
2	4

Graphs of Functions

One example is the absolute value function

$$
|x|=\left\{\begin{array}{rll}
x, & x \geq 0 & \text { First formula } \\
-x, & x<0 & \text { Second formula }
\end{array}\right.
$$

Graphs of Functions

(a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of the function $f(x)=\sqrt{1-x^{2}}$. (c) The lower semicircle is the graph of the function $g(x)=-\sqrt{1-x^{2}}$.

(a) $x^{2}+y^{2}=1$

(b) $y=\sqrt{1-x^{2}}$

(c) $y=-\sqrt{1-x^{2}}$

Graphs of Functions

EXAMPLE 4 The function

$$
f(x)=\left\{\begin{array}{cll}
-x, & x<0 & \text { First formula } \\
x^{2}, & 0 \leq x \leq 1 & \text { Second formula } \\
1, & x>1 & \text { Third formula }
\end{array}\right.
$$

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the function is increasing. If the graph descends or falls as you move from left to right, the function is decreasing.

DEFINITIONS Let f be a function defined on an interval I and let x_{1} and x_{2} be two distinct points in I.

1. If $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be increasing on I.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be decreasing on I.

Even Functions and Odd Functions: Symmetry

حَــامعة الـَمَــنارة ,

DEFINITIONS A function $y=f(x)$ is an
even function of x if $f(-x)=f(x)$,
odd function of \boldsymbol{x} if $f(-x)=-f(x)$,
for every x in the function's domain.

Even Functions and Odd Functions: Symmetry

EXAMPLE 8 Here are several functions illustrating the definitions.
Even function: $(-x)^{2}=x^{2}$ for all x; symmetry about y-axis. So $f(-3)=9=f(3)$. Changing the sign of x does not change the value of an even function.
$f(x)=x^{2}+1$
$f(x)=x$
$f(x)=x+1$

Even function: $(-x)^{2}+1=x^{2}+1$ for all x; symmetry about y-axis (Figure 1.13a).
Odd function: $(-x)=-x$ for all x; symmetry about the origin. So $f(-3)=-3$ while $f(3)=3$. Changing the sign of x changes the sign of an odd function.
Not odd: $f(-x)=-x+1$, but $-f(x)=-x-1$. The two are not equal.
Not even: $(-x)+1 \neq x+1$ for all $x \neq 0$ (Figure 1.13b).

Common Functions

Linear Functions

Horizontal and Vertical Lines

The graph of $y=c$, or $f(x)=c$, a horizontal line, is the graph of a function.
Such a function is referred to as a constant function. The graph of $x=a$ is a vertical line, and $x=a$ is not a function

Common Functions

The Equation $y=m x$
The graph of the function given by $y=m x$ or $f(x)=m x$ is the straight line through the origin $(0,0)$ and the point $(1, m)$. The constant m is called the slope of the line. We also say that y is directly proportional to x

Common Functions

A linear function is given by $y=m x+b$ or $f(x)=m x+b$

FIGURE 1.3 The graph of $f(x)=x+2$ is the set of points (x, y) for which y has the value $x+2$.

Common Functions

Non Linear Functions

Quadratic Functions

Definition: A quadratic function f is given by $f(x)=a x^{2}+b x+c$, where $a \neq 0$

Common Functions

Polynomial Functions

Definition: A polynomial function f is given by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer and a_{n}, a_{n-1}, \ldots, a_{1}, a_{0} are real numbers, called the coefficients
$f(x)=-5$
(Constant function)
$f(x)=4 x+3$
(Linear function)
$f(x)=-x^{2}+2 x+3$
$f(x)=2 x^{3}-4 x^{2}+x+1$
(Quadratic function)
(Cubic function)

Common Functions

Power Functions A function $f(x)=x^{a}$, where a is a constant, is called a power function.
There are several important cases to consider.
(a) $f(x)=x^{a}$ with $a=n$, a positive integer.

FIGURE
Graphs of $f(x)=x^{n}, n=1,2,3,4,5$, defined for $-\infty<x<\infty$.

Common Functions

(b) $f(x)=x^{a}$ with $a=-1 \quad$ or $\quad a=-2$.

(a)

(b)

FIGURE . Graphs of the power functions $f(x)=x^{a}$. (a) $a=-1$,
(b) $a=-2$.

Common Functions

(c) $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}$, and $\frac{2}{3}$.

The functions $f(x)=x^{1 / 2}=\sqrt{x}$ and $g(x)=x^{1 / 3}=\sqrt[3]{x}$ are the square root and cube root functions, respectively. The domain of the square root function is $[0, \infty)$, but the cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along with the graphs of $y=x^{3 / 2}$ and $y=x^{2 / 3}$. (Recall that $x^{3 / 2}=\left(x^{1 / 2}\right)^{3}$ and $x^{2 / 3}=\left(x^{1 / 3}\right)^{2}$.)

FIGURE Graphs of the power functions $f(x)=x^{a}$ for $a=\frac{1}{2}, \frac{1}{3}, \frac{3}{2}$, and $\frac{2}{3}$.

Common Functions

Rational Functions A rational function is a quotient or ratio $f(x)=p(x) / q(x)$, where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$. The graphs of several rational functions are shown in Figure

(a)

(b)

(c)

حَــامعة الـَمَـنارة

Inequality	Geometric Description	Interval Notation
$a \leq x \leq b$	$a \quad b$	[a, b]
$a<x<b$	$\stackrel{\square}{a}$	(a, b)
$a \leq x<b$		$[a, b)$
$a<x \leq b$		(a, b]
$a \leq x$	$\stackrel{\square}{a}$	$[a, \infty)$
$a<x$	$-\infty$	(a, ∞)
$x \leq b$	b	$(-\infty, b]$
$x<b$	b	$(-\infty, b)$

Exercices

حَــامعة الـمَـنـارة
Find the domain of each function

$$
\begin{array}{ll}
f(x)=\frac{7}{2 x-10} & g(x)=\sqrt{x+6} \\
h(x)=\sqrt{x^{2}+x+10} & f(x)=\frac{x+3}{4-\sqrt{x^{2}-9}}
\end{array}
$$

Find the domain and range of each function

$$
\begin{array}{lll}
f(x)=x^{2}+3 & f(x)=\sqrt{6-x} & g(x)=2+\sqrt{9+x} \\
f(x)=-|x+1| & h(x)=\frac{2}{x+1} &
\end{array}
$$

Consider the function given by $f(x)= \begin{cases}-x^{2}+2, & \text { for } x<1, \\ 4, & \text { for } 1<x \leq 2, \\ \frac{1}{2} x, & \text { for } x \geq 2\end{cases}$
a) Find $\boldsymbol{f} \mathbf{(- 1) , ~} \boldsymbol{f}(1.5)$, and $\boldsymbol{f} \mathbf{(6)}$
b) Graph the function

Graph the following functions

$$
\begin{array}{ll}
f(x)=-\frac{1}{2} x+3 & g(x)=\sqrt{x}+1 \\
f(x)=-x^{2}+4 & h(x)=|x-4|-4
\end{array}
$$

Graph the following functions

$$
f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq 1 \\
2-x, & 1<x \leq 2
\end{array} \quad f(x)=\left\{\begin{array}{cc}
4-x^{2}, & x<0 \\
2-x, & 0 \leq x
\end{array}\right.\right.
$$

Determine whether the function is even, odd, or neither

$$
\begin{array}{ll}
f(x)=x^{4}-x^{2}, & g(x)=\sqrt{x^{3}+1} \\
h(x)=x^{4}+3 x^{2}-1, & g(t)=2|t|+1 \\
f(x)=\frac{1}{x^{2}-1}, & f(x)=\frac{x}{x^{2}-1}
\end{array}
$$

In Exercises $1-6$, find the domain and range of each function.

1. $f(x)=1+x^{2}$
2. $f(x)=1-\sqrt{x}$
3. $F(x)=\sqrt{5 x+10}$
4. $g(x)=\sqrt{x^{2}-3 x}$
5. $f(t)=\frac{4}{3-t}$
6. $G(t)=\frac{2}{t^{2}-16}$
7. $f(x)=5-2 x$
8. $f(x)=1-2 x-x^{2}$
9. $g(x)=\sqrt{|x|}$
10. $g(x)=\sqrt{-x}$
11. $F(t)=t /|t|$
12. $G(t)=1 /|t|$

Find the domain of $y=\frac{x+3}{4-\sqrt{x^{2}-9}}$.

Graph the functions in Exercises 25-28.
25. $f(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
26. $g(x)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
27. $F(x)= \begin{cases}4-x^{2}, & x \leq 1 \\ x^{2}+2 x, & x>1\end{cases}$
28. $G(x)= \begin{cases}1 / x, & x<0 \\ x, & 0 \leq x\end{cases}$

Even and Odd Functions

In Exercises 47-58, say whether the function is even, odd, or neither.
Give reasons for your answer.
47. $f(x)=3$
48. $f(x)=x^{-5}$
49. $f(x)=x^{2}+1$
50. $f(x)=x^{2}+x$
51. $g(x)=x^{3}+x$
52. $g(x)=x^{4}+3 x^{2}-1$
53. $g(x)=\frac{1}{x^{2}-1}$
54. $g(x)=\frac{x}{x^{2}-1}$
55. $h(t)=\frac{1}{t-1}$
56. $h(t)=\left|t^{3}\right|$
57. $h(t)=2 t+1$
58. $h(t)=2|t|+1$
59. $\sin 2 x$
60. $\sin x^{2}$
61. $\cos 3 x$
62. $1+\cos x$

حَـامعة
الـمَــنارة

Thank you for your attention

