Calculus 1

Dr. Yamar Hamwi

Al-Manara University

2022-2023

Calculus 1

Lecture 2

Functions

Chapter 1 Functions

1.1 Combining Functions
 1.2 Shifting and Scaling Graphs

1.3 Trigonometric Functions

Combining Functions; Shifting and Scaling Graphs

Like numbers, functions can be added, subtracted, multiplied, and divided (except where the denominator is zero) to produce new functions. If f and g are functions, then for every x that belongs to the domains of both f and g (that is, for $x \in D_{f} \cap D_{g}$), we define functions $f+g, f-g$, and $f g$ by the formulas

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f g)(x) & =f(x) g(x) .
\end{aligned}
$$

At any point of $D_{f} \cap D_{g}$ at which $g(x) \neq 0$, we can also define the function $f>g$ by the formula

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad(\text { where } g(x) \neq 0)
$$

Combining Functions; Shifting and Scaling Graphs

Functions can also be multiplied by constants: If c is a real number, then the function $c f$ is defined for all x in the domain of f by

$$
(c f)(x)=c f(x)
$$

EXAMPLE 1 The functions defined by the formulas

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=\sqrt{1-x}
$$

have domains $D(f)=[0, \infty)$ and $D(g)=(-\infty, 1]$. The points common to these domains are the points in

$$
[0, \infty) \cap(-\infty, 1]=[0,1] .
$$

Combining Functions: Shifting and Scaling Graphs

Function
$f+g$
Formula
$(f+g)(x)=\sqrt{x}+\sqrt{1-x} \quad[0,1]=D(f) \cap D(g)$
$f-g$
$g-f$
$f \cdot g$
f / g
$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$
$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$
$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$
$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$
g / f
$[0,1]$
$[0,1]$
$[0,1]$
$[0,1)(x=1$ excluded $)$
Domain
$(0,1](x=0$ excluded $)$

Composite Functions

DEFINITION If f and g are functions, the composite function $f \circ g$ (" f composed with $g "$) is defined by

$$
(f \circ g)(x)=f(g(x)) .
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f.

The functions $f \circ g$ and $g \circ f$ are usually quite different.

Composite Functions

EXAMPLE 2 If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$.

Solution

Composition

(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4}$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$

Domain

$$
\begin{aligned}
& {[-1, \infty)} \\
& {[0, \infty)} \\
& {[0, \infty)}
\end{aligned}
$$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that $g(x)=x+1$ is defined for all real x but $g(x)$ belongs to the domain of f only if $x+1 \geq 0$, that is to say, when $x \geq-1$.

Notice that if $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, then $(f \circ g)(x)=(\sqrt{x})^{2}=x$. However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since \sqrt{x} requires $x \geq 0$.

Shifting a Graph of a Function

Shift Formulas

Vertical Shifts
$y=f(x)+k \quad$ Shifts the graph of $f u p k$ units if $k>0$
Shifts it down $|k|$ units if $k<0$

Horizontal Shifts

$y=f(x+h) \quad$ Shifts the graph of f left h units if $h>0$
Shifts it right $|h|$ units if $h<0$

Shifting a Graph of a Function

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}+1$ shifts the graph up 1 unit (Figure 1.29).
(b) Adding -2 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}-2$ shifts the graph down 2 units (Figure 1.29).

FIGURE 1.29 To shift the graph of $f(x)=x^{2}$ up (or down), we add positive (or negative) constants to the formula for f (Examples 3a and b).

Shifting a Graph of a Function

FIGURE 1.30 To shift the graph of $y=x^{2}$ to the left, we add a positive constant to x (Example 3c). To shift the graph to the right, we add a negative constant to x.

Shifting a Graph of a Function

FIGURE 1.31 Shifting the graph of $y=|x| 2$ units to the right and 1 unit down (Example 3d).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function $y=f(x)$ is to stretch or compress it, vertically or horizontally. This is accomplished by multiplying the function f, or the independent variable x, by an appropriate constant c.
Reflections across the coordinate axes are special cases where $c=-1$

Vertical and Horizontal Scaling and Reflecting Formulas

For $c>1$, the graph is scaled:
$y=c f(x) \quad$ Stretches the graph of f vertically by a factor of c.
$y=\frac{1}{c} f(x) \quad$ Compresses the graph of f vertically by a factor of c.
$y=f(c x) \quad$ Compresses the graph of f horizontally by a factor of c.
$y=f(x / c) \quad$ Stretches the graph of f horizontally by a factor of c.
For $c=-1$, the graph is reflected:
$y=-f(x) \quad$ Reflects the graph of f across the x-axis.
$y=f(-x) \quad$ Reflects the graph of f across the y-axis.

Scaling and Reflecting a Graph of a Function

FIGURE 1.32 Vertically stretching and compressing the graph $y=\sqrt{x}$ by a factor of 3 (Example 4a).

FIGURE 1.33 Horizontally stretching and compressing the graph $y=\sqrt{x}$ by a factor of 3 (Example 4b).

Scaling and Reflecting a Graph of a Function

FIGURE 1.34 Reflections of the graph
$y=\sqrt{x}$ across the coordinate axes
(Example 4c).

Trigonometric Functions

Angles

Angles are measured in degrees or radians. The number of radians in the central angle $A^{\prime} C B^{\prime}$ within a circle of radius r is defined as the number of "radius units" contained in the arc s subtended by that central angle. If we denote this central angle by θ when measured in radians, this means that $\theta=s / r$ (Figure 1.36), or

$$
\begin{equation*}
s=r \theta \quad(\theta \text { in radians }) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\pi \text { radians }=180^{\circ} \tag{2}
\end{equation*}
$$

and
1 radian $=\frac{180}{\pi}(\approx 57.3)$ degrees \quad or $\quad 1$ degree $=\frac{\pi}{180}(\approx 0.017)$ radians.

Trigonometric Functions

TABLE 1.1 Angles measured in degrees and radians

Degrees	-180	-135	-90	-45	0	30	45	60	90	120	135	150	180	270	360
θ (radians)	$-\pi$	$\frac{-3 \pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π

FIGURE 1.40 Nonzero radian measures can be positive or negative and can go beyond 2π.

Trigonometric Functions

$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

$$
\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}
$$

$$
\begin{aligned}
\text { sine: } & \sin \theta=\frac{y}{r} & \text { cosecant: } & \csc \theta=\frac{r}{y} \\
\text { cosine: } & \cos \theta=\frac{x}{r} & \text { secant: } & \sec \theta=\frac{r}{x} \\
\text { tangent: } & \tan \theta=\frac{y}{x} & \text { cotangent: } & \cot \theta=\frac{x}{y}
\end{aligned}
$$

$$
\begin{array}{lll}
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} & \sin \frac{\pi}{6}=\frac{1}{2} & \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} & \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{4}=1 & \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

Trigonometric Functions

$$
\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}, \quad \cos \frac{2 \pi}{3}=-\frac{1}{2}, \quad \tan \frac{2 \pi}{3}=-\sqrt{3}
$$

Even

$$
\cos (-x)=\cos x
$$

$$
\sec (-x)=\sec x
$$

Odd

$\sin (-x)=-\sin x$
$\tan (-x)=-\tan x$
$\csc (-x)=-\csc x$
$\cot (-x)=-\cot x$

Periodicity and Graphs of the Trigonometric Functions

DEFINITION A function $f(x)$ is periodic if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The smallest such value of p is the period of f.

Periods of Trigonometric Functions

Period π : $\quad \tan (x+\pi)=\tan x$

$$
\cot (x+\pi)=\cot x
$$

Period 2 π : $\quad \sin (x+2 \pi)=\sin x$

$$
\begin{aligned}
& \cos (x+2 \pi)=\cos x \\
& \sec (x+2 \pi)=\sec x \\
& \csc (x+2 \pi)=\csc x
\end{aligned}
$$

Periodicity and Graphs of the Trigonometric Functions

 الـمَــنارة

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(a)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $\quad y \leq-1$ or $y \geq 1$
Period: 2π
(d)

Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: 2π
(b)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $y \leq-1$ or $y \geq 1$
Period: 2π
(e)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period:
$\pi \quad$ (c)

Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: π
(f)

Trigonometric Identities

$$
\begin{equation*}
\cos ^{2} \theta+\sin ^{2} \theta=1 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
1+\tan ^{2} \theta & =\sec ^{2} \theta \\
1+\cot ^{2} \theta & =\csc ^{2} \theta
\end{aligned}
$$

Addition Formulas

$$
\begin{align*}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\sin (A+B) & =\sin A \cos B+\cos A \sin B \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \cos (A-B)=\cos A \cos B+\sin A \sin B^{4} \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B
\end{aligned}
$$

Double-Angle Formulas

$$
\begin{align*}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin 2 \theta & =2 \sin \theta \cos \theta \tag{5}
\end{align*}
$$

Half-Angle Formulas

$$
\begin{align*}
\cos ^{2} \theta & =\frac{1+\cos 2 \theta}{2} \tag{6}\\
\sin ^{2} \theta & =\frac{1-\cos 2 \theta}{2} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
c^{2}=a^{2}+b^{2}-2 a b \cos \theta \tag{8}
\end{equation*}
$$

Exercices

5. Copy and complete the following table of function values. If the function is undefined at a given angle, enter "UND." Do not use a calculator or tables.

$\boldsymbol{\theta}$	$-\boldsymbol{\pi}$	$\mathbf{- 2 \pi / 3}$	$\mathbf{0}$	$\boldsymbol{\pi} / \mathbf{2}$	$\mathbf{3 \pi / 4}$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\cot \theta$					
$\sec \theta$					
$\csc \theta$					

Exercices

$\boldsymbol{\theta}$	$-3 \pi / 2$	$-\pi / 3$	$-\pi / 6$	$\pi / 4$	$5 \pi / 6$

$\sin \theta$
$\cos \theta$
$\tan \theta$
$\cot \theta$
$\sec \theta$
$\csc \theta$

Use the addition formulas to derive the identities in Exercises 31-36.
31. $\cos \left(x-\frac{\pi}{2}\right)=\sin x$
32. $\cos \left(x+\frac{\pi}{2}\right)=-\sin x$
33. $\sin \left(x+\frac{\pi}{2}\right)=\cos x$
34. $\sin \left(x-\frac{\pi}{2}\right)=-\cos x$

Exercices

In Exercises 39-42, express the given quantity in terms of $\sin x$ and $\cos x$.
39. $\cos (\pi+x)$
40. $\sin (2 \pi-x)$
41. $\sin \left(\frac{3 \pi}{2}-x\right)$
42. $\cos \left(\frac{3 \pi}{2}+x\right)$
43. Evaluate $\sin \frac{7 \pi}{12}$ as $\sin \left(\frac{\pi}{4}+\frac{\pi}{3}\right)$.
44. Evaluate $\cos \frac{11 \pi}{12}$ as $\cos \left(\frac{\pi}{4}+\frac{2 \pi}{3}\right)$.
45. Evaluate $\cos \frac{\pi}{12}$.
46. Evaluate $\sin \frac{5 \pi}{12}$.

حَــامعة الـَمــنارة

Algebraic Combinations

In Exercises 1 and 2, find the domains and ranges of $f, g, f+g$, and $f \cdot g$.

1. $f(x)=x, \quad g(x)=\sqrt{x-1}$
2. $f(x)=\sqrt{x+1}, \quad g(x)=\sqrt{x-1}$

In Exercises 3 and 4, find the domains and ranges of $f, g, f / g$, and g / f.
3. $f(x)=2, \quad g(x)=x^{2}+1$
4. $f(x)=1, \quad g(x)=1+\sqrt{x}$

Compositions of Functions
5. If $f(x)=x+5$ and $g(x)=x^{2}-3$, find the following.
a. $f(g(0))$
b. $g(f(0))$
c. $f(g(x))$
d. $g(f(x))$
e. $f(f(-5))$
f. $g(g(2))$
g. $f(f(x))$
h. $g(g(x))$
6. If $f(x)=x-1$ and $g(x)=1 /(x+1)$, find the following.
a. $f(g(1 / 2))$
b. $g(f(1 / 2))$
c. $f(g(x))$
d. $g(f(x))$
e. $f(f(2))$
f. $g(g(2))$
g. $f(f(x))$
h. $g(g(x))$

In Exercises 7-10, write a formula for $f \circ g \circ h$.

جَـامعة الـَــــنارة
7. $f(x)=x+1, \quad g(x)=3 x, \quad h(x)=4-x$
8. $f(x)=3 x+4, \quad g(x)=2 x-1, \quad h(x)=x^{2}$
15. Evaluate each expression using the given table of values:

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	1	0	-2	1	2
$\boldsymbol{g}(\boldsymbol{x})$	2	1	0	-1	0

a. $f(g(-1))$
b. $g(f(0))$
c. $f(f(-1))$
d. $g(g(2))$
e. $g(f(-2))$
f. $f(g(1))$
16. Evaluate each expression using the functions

$$
f(x)=2-x, \quad g(x)=\left\{\begin{array}{lr}
-x, & -2 \leq x<0 \\
x-1, & 0 \leq x \leq 2
\end{array}\right.
$$

a. $f(g(0))$
b. $g(f(3))$
c. $g(g(-1))$
d. $f(f(2))$
e. $g(f(0))$
f. $f(g(1 / 2))$

حَــامعة الـمَـنارة

Shifting Graphs

23. The accompanying figure shows the graph of $y=-x^{2}$ shifted to two new positions. Write equations for the new graphs.

حَــامعة
الـَمَـنارة
24. The accompanying figure shows the graph of $y=x^{2}$ shifted to two new positions. Write equations for the new graphs.

حَـامعة
الـمَــنارة

Thank you for your attention

