

Calculus 1

Dr. Yamar Hamwi

AI-Manara University

2022-2023

https://manara.edu.sy/

Calculus 1

Lecture 2

Functions

https://manara.edu.sy/

Chapter 1 Functions

1.1 Combining Functions1.2 Shifting and Scaling Graphs1.3 Trigonometric Functions

Combining Functions; Shifting and Scaling Graphs

Like numbers, functions can be **added**, **subtracted**, **multiplied**, **and divided** (except where the denominator is zero) to produce new functions. If f and g are functions, then for every x that belongs to the domains of both f and g (that is, for $x \in D_f \cap D_g$), we define functions f + g, f - g, and fg by the formulas

> (f + g)(x) = f(x) + g(x)(f - g)(x) = f(x) - g(x)(fg)(x) = f(x)g(x).

At any point of $D_f \cap D_g$ at which $g(x) \neq 0$, we can also define the function f > g by the formula

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 (where $g(x) \neq 0$).

المَـنارة

Combining Functions; Shifting and Scaling Graphs

Functions can also be multiplied by constants: If *c* is a real number, then the function *c*f is defined for all *x* in the domain of f by

$$(cf)(x) = cf(x).$$

EXAMPLE 1 The functions defined by the formulas

 $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$

have domains $D(f) = [0, \infty)$ and $D(g) = (-\infty, 1]$. The points common to these domains are the points in

 $[0,\infty)\cap(-\infty,1] = [0,1].$

Combining Functions; Shifting and Scaling Graphs

Function	Formula	Domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f - g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0,1]
g - f	$(g - f)(x) = \sqrt{1 - x} - \sqrt{x}$	[0,1]
$f \cdot g$	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0,1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0, 1) (x = 1 excluded)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0, 1](x = 0 excluded)

جًـامعة المَـنارة

Composite Functions

DEFINITION If f and g are functions, the **composite** function $f \circ g$ ("f composed with g") is defined by

 $(f \circ g)(x) = f(g(x)).$

The domain of $f \circ g$ consists of the numbers *x* in the domain of *g* for which g(x) lies in the domain of *f*.

Composite Functions

جَـامعة المَـنارة

EXAMPLE 2 If
$$f(x) = \sqrt{x}$$
 and $g(x) = x + 1$, find

(a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$.

Solution

 Composition
 Domain

 (a) $(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$ $[-1, \infty)$

 (b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$ $[0, \infty)$

 (c) $(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{1/4}$ $[0, \infty)$

 (d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x+1) + 1 = x + 2$ $(-\infty, \infty)$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that g(x) = x + 1 is defined for all real x but g(x) belongs to the domain of f only if $x + 1 \ge 0$, that is to say, when $x \ge -1$.

Notice that if $f(x) = x^2$ and $g(x) = \sqrt{x}$, then $(f \circ g)(x) = (\sqrt{x})^2 = x$. However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since \sqrt{x} requires $x \ge 0$.

Shift Formulas

Vertical Shifts

y = f(x) + k Shifts the graph of f up k units if k > 0Shifts it down |k| units if k < 0

Horizontal Shifts

y = f(x + h) Shifts the graph of *f* left *h* units if h > 0Shifts it right |h| units if h < 0

جًـامعة المَـنارة

EXAMPLE 3

- (a) Adding 1 to the right-hand side of the formula $y = x^2$ to get $y = x^2 + 1$ shifts the graph up 1 unit (Figure 1.29).
- (b) Adding -2 to the right-hand side of the formula $y = x^2$ to get $y = x^2 2$ shifts the graph down 2 units (Figure 1.29).

FIGURE 1.29 To shift the graph of $f(x) = x^2$ up (or down), we add positive (or negative) constants to the formula for *f* (Examples 3a and b).

حامعة

المَــنارة

Add a positive constant to x. $y = (x + 3)^{2}$ $y = (x + 3)^{2}$ $y = (x + 3)^{2}$ $y = x^{2}$ $y = x^{2}$ $y = (x - 2)^{2}$ $y = (x - 2)^{2}$

FIGURE 1.30 To shift the graph of $y = x^2$ to the left, we add a positive constant to x (Example 3c). To shift the graph to the right, we add a negative constant to x.

جَـامعة المَـنارة

FIGURE 1.31 Shifting the graph of $y = |x|^2$ units to the right and 1 unit down (Example 3d).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or horizontally. This is accomplished by multiplying the function f, or the independent variable x, by an appropriate constant c.

Reflections across the coordinate axes are special cases where c = -1

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1, the graph is scaled:

- y = cf(x) Stretches the graph of f vertically by a factor of c.
- $y = \frac{1}{c}f(x)$ Compresses the graph of f vertically by a factor of c.
- y = f(cx) Compresses the graph of f horizontally by a factor of c.
- y = f(x/c) Stretches the graph of *f* horizontally by a factor of *c*.

For c = -1, the graph is reflected:

- y = -f(x) Reflects the graph of f across the x-axis.
- y = f(-x) Reflects the graph of f across the y-axis.

Scaling and Reflecting a Graph of a Function

جَـامعة المَـنارة

FIGURE 1.32 Vertically stretching and compressing the graph $y = \sqrt{x}$ by a factor of 3 (Example 4a).

FIGURE 1.33 Horizontally stretching and compressing the graph $y = \sqrt{x}$ by a factor of 3 (Example 4b).

Scaling and Reflecting a Graph of a Function

حَـامعة المَـنارة

FIGURE 1.34 Reflections of the graph $y = \sqrt{x}$ across the coordinate axes (Example 4c).

Trigonometric Functions

Angles

Angles are measured in degrees or radians. The number of radians in the central angle A'CB' within a circle of radius r is defined as the number of "radius units" contained in the arc s subtended by that central angle. If we denote this central angle by θ when measured in radians, this means that $\theta = s/r$ (Figure 1.36), or

and

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians.

Trigonometric Functions

TABLE 1.1 Angles measured in degrees and radians

Degrees	- 180	- 135	- 90	- 45	0	30	45	60	90	120	135	150	180	270	360
θ (radians)	-π	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

FIGURE 1.40 Nonzero radian measures can be positive or negative and can go beyond 2π .

https://manara.edu.sy/

جَـامعة المَـنارة

Trigonometric Functions

hypotenuse opposite adjacent $\sin \theta = \frac{\text{opp}}{\text{hyp}}$ $\csc \theta = \frac{\text{hyp}}{\text{opp}}$ $\cos \theta = \frac{\mathrm{adj}}{\mathrm{hyp}} \quad \sec \theta = \frac{\mathrm{hyp}}{\mathrm{adj}}$ $\tan \theta = \frac{\operatorname{opp}}{\operatorname{adj}} \quad \cot \theta = \frac{\operatorname{adj}}{\operatorname{opp}}$

Trigonometric Functions

 $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \sin \frac{\pi}{6} = \frac{1}{2} \qquad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \qquad \cos \frac{\pi}{3} = \frac{1}{2}$ $\tan \frac{\pi}{4} = 1 \qquad \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \qquad \tan \frac{\pi}{3} = \sqrt{3}$

Trigonometric Functions

جـامعة المَـنارة

المَــنارة

Periodicity and Graphs of the Trigonometric Functions

DEFINITION A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

Periods of Trigonometric Functions

- **Period** π : $\tan(x + \pi) = \tan x$ $\cot(x + \pi) = \cot x$
- Period 2π : $\sin(x + 2\pi) = \sin x$ $\cos(x + 2\pi) = \cos x$ $\sec(x + 2\pi) = \sec x$ $\csc(x + 2\pi) = \sec x$

جَـامعة المَـنارة

Periodicity and Graphs of the Trigonometric Functions

https://manara.edu.sy/

Trigonometric Identities

$$\cos^2\theta + \sin^2\theta = 1. \tag{3}$$

$$1 + \tan^2 \theta = \sec^2 \theta.$$

$$1 + \cot^2 \theta = \csc^2 \theta.$$

Addition Formulas

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$
$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

(4)

 $\cos(A - B) = \cos A \cos B + \sin A \sin B'$

 $\sin(A - B) = \sin A \cos B - \cos A \sin B$

Trigonometric Identities

Double-Angle Formulas

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\sin 2\theta = 2 \sin \theta \cos \theta$$

(5)

Half-Angle Formulas $\cos^{2} \theta = \frac{1 + \cos 2\theta}{2}$ (6) $\sin^{2} \theta = \frac{1 - \cos 2\theta}{2}$ (7)

$$c^2 = a^2 + b^2 - 2ab\cos\theta.$$

(8)

Exercices

5. Copy and complete the following table of function values. If the function is undefined at a given angle, enter "UND." Do not use a calculator or tables.

θ	$-\pi$	$-2\pi/3$	0	$\pi/2$	$3\pi/4$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\cot \theta$					
$\sec\theta$					
$\csc \theta$					

Exercices

θ	$-3\pi/2$	$-\pi/3$	$-\pi/6$	$\pi/4$	$5\pi/6$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\cot \theta$					
$\sec \theta$					
$\csc \theta$					

Use the addition formulas to derive the identities in Exercises 31-36.

31.
$$\cos\left(x - \frac{\pi}{2}\right) = \sin x$$

32. $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$
33. $\sin\left(x + \frac{\pi}{2}\right) = \cos x$
34. $\sin\left(x - \frac{\pi}{2}\right) = -\cos x$

Exercices

In Exercises 39–42, express the given quantity in terms of sin x and $\cos x$.

39. $\cos(\pi + x)$ **40.** $\sin(2\pi - x)$

41. $\sin\left(\frac{3\pi}{2} - x\right)$ 42. $\cos\left(\frac{3\pi}{2} + x\right)$ 43. Evaluate $\sin\frac{7\pi}{12}$ as $\sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right)$. 44. Evaluate $\cos\frac{11\pi}{12}$ as $\cos\left(\frac{\pi}{4} + \frac{2\pi}{3}\right)$. 45. Evaluate $\cos\frac{\pi}{12}$. 46. Evaluate $\sin\frac{5\pi}{12}$.

Algebraic Combinations

In Exercises 1 and 2, find the domains and ranges of f, g, f + g, and $f \cdot g$.

1.
$$f(x) = x$$
, $g(x) = \sqrt{x - 1}$
2. $f(x) = \sqrt{x + 1}$, $g(x) = \sqrt{x - 1}$

In Exercises 3 and 4, find the domains and ranges of f, g, f/g, and g/f.

3.
$$f(x) = 2$$
, $g(x) = x^2 + 1$

4.
$$f(x) = 1$$
, $g(x) = 1 + \sqrt{x}$

Compositions of Functions

- 5. If f(x) = x + 5 and $g(x) = x^2 3$, find the following.
 - **a.** f(g(0)) **b.** g(f(0))
 - **c.** f(g(x)) **d.** g(f(x))
 - **e.** f(f(-5)) **f.** g(g(2))
 - **g.** f(f(x)) **h.** g(g(x))
- 6. If f(x) = x 1 and g(x) = 1/(x + 1), find the following.
 - **a.** f(g(1/2)) **b.** g(f(1/2))
 - **c.** f(g(x)) **d.** g(f(x))
 - **e.** f(f(2)) **f.** g(g(2))
 - **g.** f(f(x)) **h.** g(g(x))

In Exercises 7–10, write a formula for $f \circ g \circ h$. **7.** f(x) = x + 1, g(x) = 3x, h(x) = 4 - x**8.** f(x) = 3x + 4, g(x) = 2x - 1, $h(x) = x^2$

15. Evaluate each expression using the given table of values:

x	-2	-1	0	1	2
f(x)	1	0	-2	1	2
g(x)	2	1	0	-1	0

a.	f(g(-1))	b.	g(f(0))	c.	f(f(-1))
d.	g(g(2))	e.	g(f(-2))	f.	f(g(1))

16. Evaluate each expression using the functions

$$f(x) = 2 - x, \quad g(x) = \begin{cases} -x, & -2 \le x < 0\\ x - 1, & 0 \le x \le 2. \end{cases}$$

a.	f(g(0))	b.	g(f(3))	c.	g(g(-1))
d.	f(f(2))	e.	g(f(0))	f.	f(g(1/2))

Shifting Graphs

23. The accompanying figure shows the graph of $y = -x^2$ shifted to two new positions. Write equations for the new graphs.

24. The accompanying figure shows the graph of $y = x^2$ shifted to two new positions. Write equations for the new graphs.

Thank you for your attention

https://manara.edu.sy/