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Functions of Several Variables )2 ..I

DEFINITIONS Suppose D is a set of n-tuples of real numbers (x;, x5, . . ., x,).
A real-valued function f on D is a rule that assigns a unigue (single) real number

w = fla, x . .., X

to each element in D. The set D is the function’s domain. The set of w-values
taken on by f is the function’s range. The symbol w is the dependent variable
of f, and f is said to be a function of the n independent variables x, to x,. We
also call the x;’s the function’s input variables and call w the function’s output
variable.

f

\ (x,¥) Ha, ) !
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> X &

v

https://manara.edu.sy/




Y

deol ~

Functions of Two Variables 6l |

DEFINITIONS A point (xg, ) 1n a region (set) R in the xy-plane is an interior
point of R if it is the center of a disk of positive radius that lies entirely in R
(Figure 14.2). A point (x, ¥,) is a boundary point of R if every disk centered at
(x,, ¥,) contains points that lie outside of R as well as points that lie in R. (The
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary

points (Figure 14.3).

(] +y* <1} {tx. )| x> +y* =1} {tx. | +y =1}

Open unit disk. Boundary of unit Closed unit disk.
Every point an disk. (The unit Contains all
interior point. circle.) boundary points.

——
i

A
\'\-\._.-"'

(b} Boundary point

(a) Interior point
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Functions of Two Variables abuns ey

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite
radius. A region is unbounded if it is not bounded.

EXAMPLE 2 Describe the domain of the function f(x,y) = Vy — x°

DEFINITIONS The set of points in the plane where a function f(x, ¥) has a con-
stant value f(x, ¥) = ciscalled alevel curve of f. The set of all points (x, v, f(x, ¥))
in space, for (x, ¥) in the domain of f, is called the graph of f. The graph of f is
also called the surface z = f(x, y).

Outside,
v = 2=

¥
- Interior points,

where v — =0

/

The parabola

B
- }l—_‘l":ﬂ

is the boundary.

> X

0
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Functions of Two Variables 8)Lial

EXAMPLE 3 Graph f(x, y) = 100 — ¥ — ¥ and plot the level curves f(x,y) = 0
flx, ¥} = 51, and f(x, ¥) = 75 in the domain of f in the plane.

® The domain of f is the entire xy-plane,

® The graph is the paraboloid z = 100 — x* — y*

fl,y) =100 —x* —y*=0, or x4y =100,

< The surface

100
= flx, v)
flx,¥) =175 =100 — x* —y*
is the graph of f.

flx,y) = 51
{a typical
level curve in
the function”s
domain)

The contour curve f(x, ) = 100 — x> — y> = 75
is the circle x” + y* = 25 in the plane z = 75.

L z=100—x*—)?
foy) =100 —x* —y* =51, o x+y =49 i '
Planez =75 | 1007
fooy) =100 —x*—y* =75 o x+y' =25 2 5
DEFINITION The set of points (x, y, ) in space where a function of three inde- ~4 |
pendent variables has a constant value f(x, v, z) = ¢ 1s called a level surface of f. ";'>'~'-- _
o il
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Functions of Three Variables 6)liaJl
EXAMPLE 4 Describe the level surfaces of the function

flr,v,2) = Va2 + 2 + 2%

DEFINITIONS A point (x, ¥, Z) 1n a region R in space 1s an interior point
of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point
(x5, ¥g. Zp) 18 2 boundary point of R if every solid ball centered at (x, ¥, ;) con-
tains points that lie outside of R as well as points that lie inside R (Figure 14.9b).
The interior of R is the set of interior points of R. The boundary of R is the set
of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if
it contains its entire boundary.

(xp. Yo- Z0)

(x0. ¥o- Z0)

(b) Boundary point (a) Interior point
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Exercises 9)tiall
@ find and sketch the domain for each function.
(x — I}y + 2)
fan=Vy—x-2 fe.y) =In(a* +y* — 4) LR e ——

@® (a) find the function’s domain, (b) find the function’s range, (c) describe the function’s level curves,
(d) find the boundary of the function’s domain, (e) determine if the domain is an open region, a
closed region, or neither, and (f) decide if the domain is bounded or unbounded.

flx,y) = l 3 = In(2 + y?)
' V16 — a2 — o7 flx,y) =Inlx" + ¥
(a) Domain: all (x, y) satisfying X2 +y" <16 (a) Domain: (x, y)#(0,0)
b) Range: all real numbers
b) Range: z=1 (
®) 8 4 (c) level curves are circles with center (0, 0) and radii » >0 _ﬂ_x 1::} = gin! (}1 — x)
(c) level curves are circles centered at the origin with radii » <4 ) ) , ¥
5 9 (d) boundary is the single point (0, 0)
(d) boundary is the circle x~ +y~ =16 (¢) open (a) Domain: all (x, y) satisfying -1 < y—x <1
(e) open (f) unbounded (b) Range: ~Z<z<Z
(f) bounded . .
(c) level curves are straight lines of the form y—x=¢ where =1 <¢ <1
(d) boundary is the two straight lines y=1+xand y =—1+x
(e) closed

(f) unbounded

https://manara.edu.sy/ £
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Exercises T
@ Find an equation for the level surface of the function through the given point.
X—yv Tz
flx,v,z2) = Vx—y—Inz, (3,—1,1) glx, v, z) = PEE— (1,0,-2)
V¥-y-Inz=2 2x=y+z=0

https://manara.edu.sy/
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Limits and Continuity in Higher Dimensions 6)liaJl
Limits for Functions of Two Variables

DEFINITION We say that a function f(x, ¥) approaches the limit L as (x, ¥) ap-
proaches (xy, ¥y), and write

lim f(x,y) =L
=y S

if, for every number g = 0, there exists a corresponding number & > 0 such
that for all (x, ¥) in the domain of f,

|fe.v) — L] < & whenever 0< V(x —xo + (v — 1) < 8.

https://manara.edu.sy/
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Limits and Continuity in Higher Dimensions
Limits for Functions of Two Variables

Y

6)jliaJl

(x, ¥1—={x, ¥a)
1. Sum Rule:

Difference Rule:

Constant Multiple Rule:

~ B P

Product Rule:

5. Quotient Rule:

6. Power Rule:

7. Root Rule:

THEOREM 1 —Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

lim fix,y) =1L and lim glx,v) = M.

(x, vh—= (2, ¥a)

lim }(f(xi y)+goy)=L+M

{x, ¥)—{xy, ¥a
lim  (f(x,y) —gx,y)=L—-M
{x, ¥)—(xy, ¥a)
lim  kf(x,y) = kL (any number k)

{x, ¥)=lxy. ¥g)

lim  (f(r,3) g y) = LM

{x, ¥)—l{xy, ¥a)
im fey L
() —ix. vo) &0, ¥) MT

M#0

lim [ f(x,y)]" = L", n a positive integer
{x, ¥)—={xp, ¥

lim Vi, y) = VL= L
{x, ¥)—(xy. ¥a)
n a positive integer, and if n 1s even,
we assume that L = 0.

https://manara.edu.sy/
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Limits and Continuity in Higher Dimensions suiass waasery
Limits for Functions of Two Variables

X — Xy
EXAMPLE 2 Find lim )
(e 3)—=0.0 \/x — V/y
¥t — xy {Il_@)(\/‘;-p\/;:]

lim = lim = lim
=00 Ve — Vy o= (Vi — Vi) (Vi + V) (. ¥)—»{(0.0)

A(Vx+Vy) =0(Vo+Vo)=0

EXAMPLE 4 If f(x,y) = %, does L Jim £ y) exist?

Along the x-axis f(x, 0) = 0 for all x # 0
along the line y =x flx,x) =x/x=1forallx# 0

https://manara.edu.sy/
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Limits and Continuity in Higher Dimensions deola
Continuity B Av—

DEFINITION A function f(x, y) is continuous at the point (xg, yg) if

£

o
>

|
1. f is defined at (xp, o), \
2. lim  f(x, v) exists, *
{x, yl—{xy. ¥a) —y
3. lim f0ey) = fGos o).
(x, ¥)—(xp. ¥a)
A function is continuous if it is continuous at every point of its domain.
JI'
.,
EXAMPLE 5 Show that _o0s lo ox
—1 1
2 e y) # (0, 0) —0.3 0.8
fl,y) = ¢ + 3% i ’ ] '
0, (x,y) = (0, 0) 0, x
is continuous at every point except the origin (Figure 14.14). 0.8 0.8
1 —1
lim  f(ny) = lim [ flx, ¥) } = 2 08 o —038
(x. ¥)—(0,0) (x. ¥)—(0.0) gl P 1 + n
along y=mr i
13

https://manara.edu.sy/



[

6)jliaJl

Two-Path Test for Nonexistence of a Limit
If a function f(x, y) has different limits along two different paths in the domain of
f as (x, y) approaches (xp, yp), then lim, y_.p v F(x, ¥) does not exist.

EXAMPLE 6 Show that the function
212}-‘

o+ }-‘1

flx y) =

(Figure 14.15) has no limit as (x, y) approaches (0, 0).

lim X V)= lirm |: X, ¥
(x, 1-}—"(11{!;] f{ i } (x, ¥)—=(0,0) -ﬂ: J"]

\ =
v=k= I. - kl
along y=fx" ’

https://manara.edu.sy/ i
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Continuity of Compositions

If f is continuous at (xy, yp) and g is a single-variable function continuons at
f(xp. ¥p), then the composition /i = g e f defined by hix, ¥) = g(f(x, ¥)) is con-
tinuous at (xg, ¥p)-

xy

&, cos In(l +x»")  are continuous at every point (x, y).

~+ 1

Functions of More Than Two Variables

et E:'1_| 1

li = = =
P_a.(llt,rnl,—lj 24+ cos Vry (1P +cos0 2

https://manara.edu.sy/
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Exercises 8Ll
 ox—y+2Va-2Vy VeV FT _ 1 _ sin(x” +37
lim =2 lim E— - llm —— 1
@000 Vx—Vy e e (x, ) >(0,0) 4y

IFy

@ At what points (x, y) in the plane are the functions continuous?

x+y 24y
Xyl = — . =
fey) = 7=35 g y) = 5=

@At what points (x, v, z) in space are the functions continuous?

1 |
foy.) = Vo +y* — 1 hx,y.2) = hix.y.z) =
. | Iy + Iz [xy] + 2]
All (x, v, z) except the interior of the cylinder
X2 +y2 =1 All (x, y, z) except (x,0,0) All (x, v, 2) except (0, y,0) or (x,0,0)

@® By considering different paths of approach, show that the functions have no limit as (x, v) — (0, 0).

* -y

o+ }-‘1

_ﬂ:‘
along y=kx" _f{,r,, },} _ along y=kx
| Jrjll,| k =0

flx,y) =

https://manara.edu.sy/ &
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EXxercises K v
@ define f(0, 0) in a way that extends f to be continuous at the origin.
I — .1_,_‘3?1 + 3_}11 _ Ixly
_fl:_l‘{,_'p'}=ln( _Iz'l‘_}‘l ) ‘f('r’}r}_xl_'_}_,l
J(0.0)=In3 f{ﬂ,[}):ﬂ

https://manara.edu.sy/
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Partial Derivatives
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Partial Derivatives of a Function of Two Variables

DEFINITION The partial derivative of f(x, y} with respect to x at the point

(X0, Yo} is
af .l + hyye) — fxo. yo)
a = hm I .
(30 A0
provided the limit exists.
df 0z
E., _fI., and &_I

1

4 Vertical axis in
“the plane ¥ = yg

Plxg, ¥o. flxg. o)

2= flx. ¥

The curve z = flx. yg)
in the plane ¥ = ¥,

Tangent line

\a

Horizontal axis in the plane y = y;,

https://manara.edu.sy/
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Partial Derivatives of a Function of Two Variables  6jtiaJl

R LT

DEFIMNITION The partial derivative of f{x, y) with respect to y at the point \:rc‘r:}':?l f;::
(¥0»30) is :
af Lol = tim f(xo, 3o + A1) — flxg. 2)
= = 2 f(x, = .
Wleosa y=

w =D h

-

[

X=X 4

>

Tangent line
provided the limit exists.

This tangent line

P(xp. ¥ Xp. ¥, ‘
has slope f,(xo. ¥o)- (Xo. Yo f(Xo. o)) |

This tangent line
has slope f,(xg. yo)-

The curve z = f(xg, ¥) in
the vertical plane x = xy

2= f(x.y) (xg. ¥p)

(xp. Yo T k)

The curve z = f(x,. y) \

Horizontal axis
in the plane x = x

—

£y /23
= A
f e
x e s""'\ : / /

Y=Y (xp. o) X=X

in the plane
X=X,

https://manara.edu.sy/ =
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Partial Derivatives

EXAMPLE 1 Find the values of af /dx and df /dy at the point (4, —5) if

flx, M =x>+ 3y +y— L

af o

—a=—a[_r2+3,1}'-|—y—l]=1t+3*l-y+l]—l]=1t+3}r. —7.
af 9., _ _

a—y—a—y(x —l—3xy-|—y—1)—0—|—3'x*1—|—1—0—3.1‘—I—1. 13,

EXAMPLE 3 Find f, and f, as functions if

2y
o) = 5+ cosx

2y 2y sin x

= | — | = . .E."!r'- "
I dx (}‘ T COos I) (v + cos _r}zd f}_ = ‘;_1 (}1 - ) . LCOs X

+ COs X (v + cosx)*

https://manara.edu.sy/
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Partial Derivatives
EXAMPLE 4 Find dz fax assuming that the equation
yz—Inz=x+y
defines z as a function of the two independent variables x and y and the partial derivative
exists.

i

d d dy Oy dz _
oo () —g-Inz =2+ o= = Ew

EXAMPLE 5 The plane x = 1 intersects the paraboloid ;; = x* + y* in a parabola
Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.19).

vi — 1

oz

o
- = — =22 =4
dy (1.2} dy

(1.2)

(1.2}

(x* +57)

line

https://manara.edu.sy/
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Partial Derivatives
EXAMPLE 7 If resistors of R;, R, and R, ohms are connected in parallel to make an ﬁﬂl
R-ohm resistor, the value of R can be found from the equation ' R ™
1_1,1,1 Ve
R R "R R N A
(Figure 14.20). Find the value of R /dR, when R, = 30, B, = 45, and Ry = 90 ohms.
k I |
L

When R, = 30, R, = 45, and Ry = 90,

t1_ 1, 1,1 _3+2+1_6 _ 1 oR {15V _ 1V 1
R-30 735790~ 90 90 15 = E‘(E ~\3/ 79

Thus at the given values, a small change in the resistance R, leads to a change in R about 1/9th as large.

https://manara.edu.sy/
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Partial Derivatives
Second-Order Partial Derivatives
a*f s a2 ;
=2 9T Jixe — or f..,
* N Pf _a(of\  &f _ o
of f ol ox\ax )’
gy O T2 Grar OF T

EXAMPLE 9 If f(x,¥) = xcosy + ye%, find the second-order derivatives

a*f a*f a*f 4 & f
a2 M argy
Ph_o(\_ . P afd
Ayl dr \ dy ¥ $=E E|'_ = —XCosy
&f g [ofy _ O’ f a fafy .
ﬁ‘@(ﬁ)“s‘”“’r ax oy a(a—f)““”“"

dxdy  dx

(

of
dy

)

https://manara.edu.sy/
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Partial Derivatives N A—

The Mixed Derivative Theorem

THEOREM 2—The Mixed Derivative Theorem

If f(x, y) and its partial derivatives f,, f,, f,., and f are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then

Fola,B) = fy(a. b).

a2
EXAMPLE 10  Find 2% if

dx dy
W= xy + }rli I
Partial Derivatives of Still Higher Order
.3 i
° fﬁ = fn'.s:!' d-'f = f
dx dy 912 ay 2 VX

EXAMPLE 11 Find fy. if fx,y,2) = 1 — 2%z + x%y.

https://manara.edu.sy/
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Exercises
® find af/dx and 3f /oy fl,y) =2 flr,y) = cos” (3x — y7)

@ Find all the second-order partial derivatives of the functions

& B .
w = xsin (x3y) glx, v) = cosx~ — sin 3y
®  Which order of differentiation will calculate [y faster: x first or y first? Try to answer without writing anything down.

fle,y) =y + (x/y) flx,y) = xInxy
(c) x first (f) v first
® 1let f(x,y) = 2x + 3y — 4. Find the slope of the line tangent to m =3
this surface at the point (2, —1) and lying 1n the a. plane x = 2 m=2
b. plane y = —1.
@® find a function £ = f(x,y) whose partial derivatives are as given
3 d
E}__i = 3xy' — 2, £ = 2xy + 6y fi(x,v) ::lr?'y2 e +3y2

https://manara.edu.sy/
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6)jliaJl

®  Find the value of dzfdx at the point (1, 1, 1) if the equation

o+ P — 2y =0

defines z as a function of the two independent variables x and y and

the partial derivative exists.

@ Express v, in terms of u and y if the equations x = vInu and y = u In v define » and v as functions

of the independent variables x and y, and if v, exists.

@ The three-dimensional Laplace equation
af  Ff  af

3 + 2 - 5
dy=  dy-  dz-

fy. ) =x +y =22

@ one-dimensional wave equation

0

=3 2
dw s dw

——

—

o
w = 5co0s(3x + 3cr) + &7

a2 f
x>

- ¥
a2

0,

The two-dimensional Laplace egquation

Pf_

(In w)in v)-l

fr,v) = InVa? + 32

The heat equation An important partial differential equation
that describes the distribution of heat in a region at time ¢ can be

represented by the one-dimensional heat equation

of _ &°f
At g2

i

u(x, f) = sin (qx) +eP

)

https://manara.edu.sy/
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The Chain Rule ﬂjo_aJl

Chain Rule
THEOREM 5—Chain Rule For Functions of One Independent Variable
and Two Intermediate Variables w = flx, y) ?;'::i ent
If w = fi{x, y) is differentiable and if x = x(f), v = y(f) are differentiable func- f .
tions of ¢, then the composition w = f{x{f), ¥(t)) is a differentiable function of ¢ % i—::
ﬂ.nd -.-_.-"' i
T{,f \}1‘ Intermediate
ﬂ"l-i-’ ' ' - : ariables
= £, yO)X' (@) + Fx(0), Y1)y @), /7 vamables
dx /dy
or et dit
e , i
dt — axdt ' dydt dw _ dwdx  dw dy
dt dx dt dy di
EXAMPLE 1 Use the Chain Rule to find the derivative of
W = xy
with respect to f along the path x = cost, y = sint. What is the derivative’s value at
t = /27
dw _ dwdy | owdy ew T
—_— = e —_— cos| 2= )= cosm = —1
dt — dxdt ' dy di m— | " ( 2) 4
https://manara.edu.sy/ 27
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The Chain Rule

THEOREM 6—Chain Rule for Functions of One Independent Variable and
Three Intermediate Vanables

If w = f(x, v, z) is differentiable and x, y, and z are differentiable functions of ¢,
then w is a differentiable function of t and

dw _ dwdx | dwdy dw dz

—_—— 4 — ==

dr ~ axdt | oy dt | dz dt

EXAMPLE 2 Find dw/dr if

w = xy + z, X = Cost, y = Sinf, =L dw

- =

In this example the values of w(r) are changing along the path of a helix (Section 13.1) as ¢
changes. What is the derivative’s value at ¢t = 07
dw _dwdx | owdy | awdz

— = —— + — — = | + cos 21,
cdt dx (ff dav i ™ dz et 1 cas 2¢

—_— = —+ . =
ar | _, 1 cos (()) = 2

Chain Rule

w = flx, v, 1)

/az
/ di
\/

)

Dependent
variable

Intermediate
variables

Independent
variable

_dwdx | dwdy | dwdz

war Thar Tad

https://manara.edu.sy/
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The Chain Rule CIJLx_aJI

THEOREM 7—Chain Rule for Two Independent Variables and Three
Intermediate Variables

Suppose that w = f(x, v, z), x = g(r, 5), ¥ = h(r, 5), and z = k(r, s). If all four
functions are differentiable, then w has partial derivatives with respect to r and s,
given by the formulas

dw _dwar  awd  awdz
dr  dxdr | dyor | dzar
dw _dwax | owdy | odwdz

% _ards  dyds | dzas

Dependent
variable
f
. . |
I ediat \ -
Independent
variables

w = fl g(r, 5), hir, 5), k(r, 5)) dw _ dw dx | dw dy
ar  ax ar | 8y ar

ow dz
a7 dr

aw _ aw ax
a5 dx ds

aw ay
dy ds

dw 9z
dz dy

https://manara.edu.sy/
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The Chain Rule B
EXAMPLE 3 Express dw/or and ow fds in terms of r and s if
w=x+2y+z2, x=£., }'=r2-|-1n$', z=2r
ow _wax  owd owde _ 1
dr — dxor | dvor | dzdar 8 d
hw _wax  wdy owde 2 r
dy ~ deds | dyds | dzay 5 42
EXAMPLE 4  Express dw/dr and ow /ds in terms of r and s if
w=:rz-|-}‘2, =r—s y=rts
dr  dxadr  avor

ols oy ds E

45

https://manara.edu.sy/
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The Chain Rule
Implicit Differentiation Revisited

THEOREM 8—A Formula for Implicit Differentiation
Suppose that F{x, ¥) is differentiable and that the equation Fix, y) = 0 defines y
as a differentiable function of x. Then at any point where F, # 0,

ey F,

&= F M

EXAMPLE 5  Use Theorem 8 to find dy /dx if ¥* — x* — sinxy = 0.

F(x,v) = y* — x> — sinxy.

dy F, —2x —ycosxy  2x + ycosxy

X
dx F, 2y —xcosxy 2y — xcosxy

https://manara.edu.sy/
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The Chain Rule O)liol
Fix,v.2) =0
dz F. az P;
ax - E WM oHTTE 2)

dz dz "
EXAMPLE 6  Find 5md5at 0,0,0)if ¥ + 22 + ye= + zcosy = 0

Flx,y,z) = © + =+ ye'©< 4+ zcosy
F,=3x"+ge%  F,=¢“—zsiny, and F, =2z+ xe" +cosy
F(0,0,0) = 0, £(0,0,0) = 1 # 0

dz _ B 3x? + zye® q a;__ﬂ-__ ec — zsIny
ax ~  F. 2z + xye® + cosy an dy F. 2z + xye" + cosy
. dz _ 0 _ dz _ 1 _
At (0, 0, 0) we find w1V and o1 1

https://manara.edu.sy/
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Exercises 8Ll
® (a) express dw/dt as a function of t, both by using the Chain Rule and by expressing
w in terms of t and differentiating directly with respect to t. Then (b) evaluate dw/dt at
the given value

w=2x>4+73y% x=cost, y=sint; t=1m %zﬂ
w=2y*=1Inz, x=mIh({rr+1), vy=tan'e, z=¢"  4drtan'1+1 T+1

t=1
@ Find the values of dz/dx and dz /dy at the points

sin(x + ) +sin{y+ ) +sinix+ =0, (m m7) %{m 1) =-1 %(m ) ==l

@® Find ow/fdr when r=1ls=-1 if w={x+y+ F.x=r—s y=cos(r+ 5),z =sln(r + 5. 12

@ Changing voltage in a circuit The voltage V in a circuit that satisfies the law V = IR is slowly dropping as the battery wears

out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

dv _ vl , oVdR
dt dl dt  dR dr
to find how the current is changing at the instant when R = 600 ohms, I = 0.04 amp, «R/dr = 0.5 ohm/sec, and 4dV/dr = —=0.01 volt/sec.
j—f = —0.00005 amps/sec

¥

+1,—

I
( Battery
L "

R
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Exercises §)liall
@ Temperature on an ellipse Let 7 = g(x, y) be the temperature at the point (x, y) on the ellipse
x=2\/2_’cc:5r, y=\/isint, 0=t=2m,

oT _ oT _
ax Y ay

a. Locate the maximum and minimum temperatures on the ellipse by examining d7 /dt and d*T/dt>.

and suppose that x.

b. Suppose that 7 = xy — 2. Find the maximum and minimum values of T on the ellipse.

= %, BTE’ STH’ ?T?T maximum at (x, y)=(2, 1) minimum at (x, y) =(-2, 1) maximum at (x, y) =(-2,—1) minimum at (x, y) =(2,-1)

T(2,1)=T(-2,-1)=0 T(=2,1)=T(2,-1)=—4,

https://manara.edu.sy/ .
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Directional Derivatives and Gradient Vectors u.-wl_ﬂ-l
6)lioJ

Directional Derivatives in the Plane

DEFINITION The derivative of f at Fy(xy, y;) in the direction of the unit
vector u = i + u;j is the number

(ﬁ) _ ""}, flag + suy, vo + su2) — flxg, o) (1)
u, P, R

s 5 i

provided the limit exists.

EXAMPLE 1 Using the definition, find the derivative of
fle,y) =% + xy
at Py(1, 2) in the direction of the unit vector n = {l;’\ﬁ}l + {1/v2)j.

= hm G

WL o
(“’f) im flxg + suy, 3o + sun) — flxg, yo) f(l a2t v’i) f(1,2)

JF
A
Line x = xp + suy. v = vy + 515
u= i+ u,j
Direction of
increasing s
R
Folxp, ¥o)
* X
0 /
Surface S: [
flxg + suty, ¥ + sua) — flxg, ¥o)

z=fxy)

—

‘‘‘‘‘‘‘

ij..".i-' u, Py —=[] s s—=0) ’ // "'"‘;f(.\ :"l
(1 " L)E ” (I - L)(E + i) - (P +1-2) < /‘*\ " (o + S50+ 51
—_ 1 \E -\"E \'/E - i Pylxg. yo) u =i + 1]
- Jiy ;
35
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Interpretation of the Directional Derivative -

(8]

The equation z = f(x, ¥) represents a surface § in space. If z; = fi(xy. ¥y), then the point I
FP(xy, ¥o, 2p) hes on §. The vertical plane that passes through P and Fy(x,, ) parallel to n e=feny)
intersects S in a curve C (Figure 14.28). The rate of change of f in the direction of u is the \ |
slope of the tangent to C at P in the right-handed system formed by the vectors u and k.

flxg + suy, vg + sua) — flxg. ¥o)

Il
T T

* Tangent line

When u = i, the directional derivative at P, is df fdx evaluated at (xg, yp). When
u = j, the directional derivative at P, is df /dy evaluated at (xp, yp). The directional deriva-
tive generalizes the two partial derivatives. We can now ask for the rate of change of f in
any direction u, not just the directions i and j.

Plxg. ¥ )
|
i
|
1
1
|
|

y

For a physical interpretation of the directional derivative, suppose that T = f(x, y) 1s r/ _\\ s AN SO
- - . - . 10 1. Yo T Sta
the temperature at each point (x, y) over a region in the plane. Then f(xg, ¥} 15 the tem- il
. . . i ol X Yo u = 1yi + 1]
perature at the p-mn_t Pu{_ru,‘:.ﬂ} and‘ Du_f| p, 1s the instantaneous rate of change of the tem-
perature at F; stepping off in the direction u.

https://manara.edu.sy/ ke
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Calculation and Gradients

X = xp T sy, ¥ =y t+ S,

(df) _f| ax  of) dy_of - off  _faf +af } l - ]

ds T ix| . ds U oavl ds ar av = clud + u

ds J p. dx p, 45 dy p, A5 x|, 0 ay p. E &x ay PDJ i 2]
Gradient of f at F Direction W

DEFINITION The gradient vector (or gradient) of f(x, v) is the vector

.f
V - | +
f= a},J
The value of the gradient vector obtained by evaluating the partial derivatives
at a point By(xg, yp) is written

Vflp, or  Vf(xp ).

https://manara.edu.sy/
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Calculation and Gradients
THEOREM 9—The Directional Derivative Is a Dot Product "
If f(x, ¥) is differentiable in an open region containing Fy(xg, yg), then |
df
(E)u,p = Vflp, u, “)
the dot product of the gradient V f at F, with the vectoru. In brief, D, f = Vf-w )

EXAMPLE 2 Find the derivative of f(x, ¥) = xe¥ + cos (xy) at the point (2, 0) in the
direction of v = 3i — 4j.

3

To=Y=2i-2j £42,0) = (¢ — ysin ()

M

=2~ 2.-0=2
(2,09

=& —0=1 f,2,0) = (&' — xsin (1))
(2.0

nm =

Vilen = f2, 01 + f(2,005 =i+ 2j

https://manara.edu.sy/ 2
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Properties of the Directional Derivative D, f = Vf-u = |Vf| cos#

1. The function f increases most rapidly when cos & = 1, which means that
# = 0 and u is the direction of Vf. That is, at each point P in its domain,
f increases most rapidly in the direction of the gradient vector Vf at P. The
derivative in this direction 1s

D,f = |Vf| cos (0) = |VF|.
2. Similarly, f decreases most rapidly in the direction of —V f. The derivative in
this direction is D,f = |V f|cos (ar) = —|Vf|.

3. Any direction u orthogonal to a gradient Vf # 0 is a direction of zero change
in f because @ then equals /2 and

D.f = |Vf|cos(w/2) = |Vf|-0=0.

https://manara.edu.sy/
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EXAMPLE 3 Find the directions in which f(x, v) = (x2/2) + (°/2)

(a) increases most rapidly at the point (1, 1), and
(b} decreases most rapidly at (1, 1).

(¢} What are the directions of zero change in f at (1, 1)7

(a) The function increases most rapidly in the direction of Vf at (1, 1). The gradient there is

Vila.n = (i + ) =i+].
(1. 1)

1+ j i+ j 1 . 1 . ) / Zero change
Tl T Varra2 Vi VR decese e
1 .] = _|_ ) ecrease in
Most rapid / V=Lt
(b} The function decreases most rapidly in the direction of —V f at (1, 1), which is increase in f
NS SPR B
V2 V2
(¢} The directions of zero change at (1, 1) are the directions orthogonal to V:
n=—Li+Lj and —n=Li—Lj
V2 V2 V2 V2T
40
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Gradients and Tangents to Level Curves ™77
If a differentiable function f(x,y) has a constant value ¢ along a smooth curve The level curve fix, y) = flxg, ¥g)
r = g(nNi + h(t)j (making the curve part of a level curve of f), then f(g(r), h(r)) = c.
flgle). hin) = c. r = g(i + h()j
d d df dg | 9f dh
1. I - h I = — e o —
G e h0) = Z© - S8 2l =0
of . of .\ (dg.  dh.\ _
(r’ixl-l_ﬂy']) ({f.fl—l_df'] =0 —>
' E'.!;['
Vf o
v.f|-[.=:u, Yol = .f.r(—xl.']ﬁ }'I]:ll + _ﬂ-(-Tﬂ-, ,}h}j
Tangent Line to a Level Curve
folxgs Yodx — xg) + o, ¥) (¥ — 3) = 0 (6)

https://manara.edu.sy/ =



Gradients and Tangents to Level Curves
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6)jliaJl

EXAMPLE 4 Find an equation for the tangent to the ellipse

(Figure 14.32) at the point (=2, 1).

:ﬂ:_l-a_. }'} = -::"-l___ — }31‘

D +2)+ @y - D=

[E%]

A 2

I-i-} = 2

vf]i—ll}=(%i+zfj)‘ =—i+ 2j.
(—2.1)

0 )

x — 2y = —4,

Algebra Rules for Gradients

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule:
d. Product Rule:

5. Quotient Rule:

Vif+g =Vf+ Vg
Vif—g)=Vf— Vg

Vikf) = kVf (any number k)
V(fg) = fVg + gVf

o Scalar multipliers on
‘E(i) = ‘??f 32 f?‘g left of gradients

8
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Functions of Three Variables ‘
u =i+ uj + 3k vf=d;fi+f.]+ik
. chx iy dz
D,f=VW Y + af o
uf = VF-w=50m d}m_l_ —— D,f=Vf-u=|Vf||lu| cosd = |VF| cos 8.
EXAMPLE 6
(a) Find the derivative of f(x,y,z) = x* — xy> — z at Fy(l, 1,0) in the direction of
v =2 —3j + 6k
(b) In what directions does f change most rapidly at F,, and what are the rates of change
in these directions?
nm=— "4-' gl__.]_r_ﬁk f_,__={3.12_}‘12| =25 f_ll:—ll} =—E$ f:=—1
lv| 7 1,0) (1, 1,0)

# s = 3 2 3 6
1"f_.}c|-[1.1.[”1]u =2i—2)— Kk Duflurey = VLo n= @i —2j — k- (—1 — ﬁ.] + §R)=%
(b) The function increases most rapidly in the direction of Vf = 2i — 2j — k and de-

creases most rapidly in the direction of —V f. The rates of change in the directions are,
respectively, . 5
IVl = V@ + 22+ (—D)?=V9=3 and —|Vf|=

Py

https://manara.edu.sy/
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The Chain Rule for Paths

If v(f) = x()i + y(Hj + z(Hk 1s a smooth path C

[

6)liaJl

dw _ awdx | awdy | dwdz

_|_

dt — ax dt aydr+azdr‘

w = f(r(f)) is a scalar function evaluated along C

The Derivative Along a Path

4 fe) = V) r' o).

(7)

https://manara.edu.sy/
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Exercises dsols
@® find V[ at the given point. O)tiall
Jly,2) =22 = 3(x* + yH)z + tan' vz, (1L L 1) vf =-Ui-6j+1k
@® find the denvative of the function at F, in the direction of u.
= = fyn e T ¢ = I3 = N _ _ —
B(x, v) = tan " (y/x) + /3 sin (xv/2), Fy(l, 1), u = 3i — 2j (Dyh)p, _?h'u_zjﬁ_zjﬁ__zjﬁ
Br,v,z) =cosxy + e +Inzv, F(l,0,1/2),u=1i+2j+ 2k (Dyh)p =vh-u=L4lid=2

@ find the directions in which the functions increase and decrease most rapidly at F,. Then find the derivatives of the functions

in these directions
1 Lk

flx.v.z2)=Inxy + Inyvz + Inxz, Fl 1. 1) u=ﬁi+ﬁj+ﬁk —u=-—i-ej-
(Dyf)p, =7f u=[7f] =243 and (D_,f)p, =-243
@ sketch the curve f(x. v) = ¢ together with V[ and the tangent line at the given point. Then write an equation for the

W= 24T + 2

| 1
2N
P = )
-ﬁx +'ﬁ} 4 E+JJW~=—X+2‘J§

tangent line. 24y =4, {Vﬁ yﬁ}

>
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Tangent Planes and Differentials S S

Tangent Planes and Normal Lines

DEFINITIONS The tangent plane to the level surface f(x, v, z) = ¢ of a dif-
ferentiable function f at a point B, where the gradient is not zero is the plane vf =

through P, normal to V|, . 2

Vi

The normal line of the surface at F, is the line through F, parallel to V f| P,-

¥ __f(x,y.2)=c

Tangent Plane to f(x,y.z) = ¢ at Py(x,, ¥y 24)
FlF)x — xp) + FUR)y — ) T fAR)z — 29 =0 (1)
Normal Line to f(x, y,2) = c at Py(x,. ¥y )
x=x+ fR)L  y=x Tt LEN =5t fARN (2)

https://manara.edu.sy/ e
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Tangent Planes and Differentials 2

The surface
x?+y2+:f:—9=0

Tangent Planes and Normal Lines I
EXAMPLE 1 Find the tangent plane and normal line of the level surface 3”7

flx,v,z2) = o+ :_-,-‘2 +z—9=10 A circular paraboloid

Normal line
at the point Fy(l, 2, 4).

, ! | \-Tangcnt plane
Vile, = (2x + 2yj + k) =2i + 4j + k. | 2

(1,2.4) ; -~ \

The tangent planeis 2(x — 1) + 4y — 2) + (z — 4) =0, or x+4dy+z=14. «

The line normal to the surface at Fyis x = 1 + 2, v=2+ 4t r=4 +

https://manara.edu.sy/ e
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Tangent Planes and Differentials o)lioJl

Plane Tangent to a Surface z = f(x, y) at (xy, v, F(x5. ¥0))
The plane tangent to the surface z = f(x, ¥) of a differentiable function f at the

point Fy(xg, ¥, Zp) = (g, Yo Fxg, W) 1S

Folog. ) — xp) + fL00, 30y — 3 — (@ — z) = 0. (3)

EXAMPLE 3 The surfaces

flx, v, 2) =x' + }'1 —2=0 A cylinder and glx,v,z)=x+z—4=10

meet in an ellipse E (Figure 14.35). Find parametric equations for the line tangent to E at
the point Fy(l, 1, 3).

The tangent line is orthogonal to both Vf and Vg at F, mmmmp Parallelto v = Vyf x Vg

Vila sy = @xd + 2yj) =2i+2f Vg|lpiy=0G+k =i+k
(1.1, 3) (1, 1.3)

i
V=022 X+ k)= |2
1

£ b e

k
0| =2i—2j— 2k mmm) =1+ 2,
1

The plane
x+z—4=0

2l v, I)

The ellipse £

A plane (1. 1.3)

The cylinder
P+ -2=0

¥
L, ¥, Z)

v=1-—2, =3 — 2L

https://manara.edu.sy/
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