MATHEMATICAL ANALAYSIS 2

, wanum
 \section*{Lecture}
 \section*{Lecture}

Prepared by
Dr. Sami INJROU

- Functions of Several Variables
- Limits and Continuity in Higher Dimensions
- Partial Derivatives
- The Chain Rule
- Directional Derivatives and Gradient Vectors
- Tangent Planes and Differentials
- Extreme Values and Saddle Points
- Lagrange Multipliers
- Taylor's Formula for Two Variables
- Partial Derivatives with Constrained Variables

Functions of Several Variables

DEFINITIONS Suppose D is a set of n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A real-valued function f on D is a rule that assigns a unique (single) real number

$$
w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

to each element in D. The set D is the function's domain. The set of w-values taken on by f is the function's range. The symbol w is the dependent variable of f, and f is said to be a function of the n independent variables x_{1} to x_{n}. We also call the x_{j} 's the function's input variables and call w the function's output variable.

DEFINITIONS A point $\left(x_{0}, y_{0}\right)$ in a region (set) R in the $x y$-plane is an interior point of R if it is the center of a disk of positive radius that lies entirely in R (Figure 14.2). A point $\left(x_{0}, y_{0}\right)$ is a boundary point of R if every disk centered at $\left(x_{0}, y_{0}\right)$ contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. The region's boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary points (Figure 14.3).

(b) Boundary point

(a) Interior point

$\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$
Open unit disk. Every point an interior point.

$\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ Boundary of unit disk. (The unit circle.)

$\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
Closed unit disk.
Contains all
boundary points.

Functions of Two Variables

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite radius. A region is unbounded if it is not bounded.

EXAMPLE 2 Describe the domain of the function $f(x, y)=\sqrt{y-x^{2}}$

DEFINITIONS The set of points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called a level curve of f. The set of all points $(x, y, f(x, y))$
 in space, for (x, y) in the domain of f, is called the graph of f. The graph of f is also called the surface $z=f(x, y)$.

Functions of Two Variables

EXAMPLE 3 Graph $f(x, y)=100-x^{2}-y^{2}$ and plot the level curves $f(x, y)=0$ $f(x, y)=51$, and $f(x, y)=75$ in the domain of f in the plane. The domain of f is the entire $x y$-plane,

The graph is the paraboloid $z=100-x^{2}-y^{2}$

$$
\begin{array}{rlrl}
f(x, y) & =100-x^{2}-y^{2}=0, & \text { or } & x^{2}+y^{2}=100, \\
f(x, y) & =100-x^{2}-y^{2}=51, & \text { or } & x^{2}+y^{2}=49 \\
f(x, y)=100-x^{2}-y^{2}=75, & \text { or } & x^{2}+y^{2}=25
\end{array}
$$

حَــامعة

Functions of Three Variables

EXAMPLE 4 Describe the level surfaces of the function

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

DEFINITIONS A point $\left(x_{0}, y_{0}, z_{0}\right)$ in a region R in space is an interior point of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point (x_{0}, y_{0}, z_{0}) is a boundary point of R if every solid ball centered at $\left(x_{0}, y_{0}, z_{0}\right)$ contains points that lie outside of R as well as points that lie inside R (Figure 14.9b). The interior of R is the set of interior points of R. The boundary of R is the set of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if it contains its entire boundary.

(b) Boundary point

(a) Interior point

Exercises

find and sketch the domain for each function.

$$
f(x, y)=\sqrt{y-x-2} \quad f(x, y)=\ln \left(x^{2}+y^{2}-4\right) \quad f(x, y)=\frac{(x-1)(y+2)}{(y-x)\left(y-x^{3}\right)}
$$

(a) find the function's domain, (b) find the function's range, (c) describe the function's level curves, (d) find the boundary of the function's domain, (e) determine if the domain is an open region, a closed region, or neither, and (f) decide if the domain is bounded or unbounded.

$$
f(x, y)=\frac{1}{\sqrt{16-x^{2}-y^{2}}}
$$

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

(a) Domain: all (x, y) satisfying $x^{2}+y^{2}<16$
(b) Range: $z \geq \frac{1}{4}$
(c) level curves are circles centered at the origin with radii $r<4$
(d) boundary is the circle $x^{2}+y^{2}=16$
(e) open
(f) bounded
(a) Domain: $(x, y) \neq(0,0)$
(b) Range: all real numbers
(c) level curves are circles with center $(0,0)$ and radii $r>0 \quad f(x, y)=\sin ^{-1}(y-x)$
(d) boundary is the single point $(0,0)$
(e) open
(a) Domain: all (x, y) satisfying $-1 \leq y-x \leq 1$
(f) unbounded
(b) Range: $-\frac{\pi}{2} \leq z \leq \frac{\pi}{2}$
(c) level curves are straight lines of the form $y-x=c$ where $-1 \leq c \leq 1$
(d) boundary is the two straight lines $y=1+x$ and $y=-1+x$
(e) closed
(f) unbounded

Exercises

- Find an equation for the level surface of the function through the given point.

$$
\begin{array}{cc}
f(x, y, z)=\sqrt{x-y}-\ln z, & (3,-1,1) \\
\sqrt{x-y}-\ln z=2 & g(x, y, z)=\frac{x-y+z}{2 x+y-z}, \quad(1,0,-2) \\
2 x-y+z=0
\end{array}
$$

Limits and Continuity in Higher Dimensions Limits for Functions of Two Variables

جَــامعة الـَمَـنارة mestasumetmy

DEFINITION We say that a function $f(x, y)$ approaches the $\operatorname{limit} L$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$, and write

$$
\lim _{(x, y) \rightarrow\left(x_{0,}, y_{0}\right)} f(x, y)=L
$$

if, for every number $\varepsilon>0$, there exists a corresponding number $\delta>0$ such that for all (x, y) in the domain of f,

$$
|f(x, y)-L|<\varepsilon \quad \text { whenever } \quad 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta .
$$

Limits and Continuity in Higher Dimensions

 Limits for Functions of Two VariablesTHEOREM 1-Properties of Limits of Functions of Two Variables The following rules hold if L, M, and k are real numbers and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M .
$$

1. Sum Rule:
2. Difference Rule:
3. Constant Multiple Rule:
4. Product Rule:
5. Quotient Rule:
6. Power Rule:
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)+g(x, y))=L+M$
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)-g(x, y))=L-M$
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} k f(x, y)=k L \quad$ (any number k)
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y) \cdot g(x, y))=L \cdot M$
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}, \quad M \neq 0$
7. Root Rule:
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f(x, y)]^{n}=L^{n}, n$ a positive integer
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}=L^{1 / n}$, n a positive integer, and if n is even, we assume that $L>0$.

Limits and Continuity in Higher Dimensions
Limits for Functions of Two Variables
EXAMPLE 2 Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}-x y\right)(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}=\lim _{(x, y) \rightarrow(0,0)} x(\sqrt{x}+\sqrt{y})=0(\sqrt{0}+\sqrt{0})=0$
EXAMPLE 4 If $f(x, y)=\frac{y}{x}$, does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist?
Along the x-axis $f(x, 0)=0$ for all $x \neq 0$
along the line $y=x \quad f(x, x)=x / x=1$ for all $x \neq 0$

Limits and Continuity in Higher Dimensions

Continuity

DEFINITION A function $f(x, y)$ is continuous at the point $\left(x_{0}, y_{0}\right)$ if

1. f is defined at $\left(x_{0}, y_{0}\right)$,
2. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists,
3. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$.

A function is continuous if it is continuous at every point of its domain.

EXAMPLE 5 Show that

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is continuous at every point except the origin (Figure 14.14).

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=m x}} f(x, y)=\lim _{(x, y) \rightarrow(0,0)}\left[\left.f(x, y)\right|_{y=m x}\right]=\frac{2 m}{1+m^{2}} .
$$

Two-Path Test for Nonexistence of a Limit

If a function $f(x, y)$ has different limits along two different paths in the domain of f as (x, y) approaches $\left(x_{0}, y_{0}\right)$, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.

EXAMPLE 6 Show that the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

(Figure 14.15) has no limit as (x, y) approaches (0,0).

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=k x^{2}}} f(x, y)=\lim _{(x, y) \rightarrow(0,0)}\left[\left.f(x, y)\right|_{y=k x^{2}}\right]=\frac{2 k}{1+k^{2}}
$$

Continuity of Compositions

If f is continuous at (x_{0}, y_{0}) and g is a single-variable function continuous at $f\left(x_{0}, y_{0}\right)$, then the composition $h=g \circ f$ defined by $h(x, y)=g(f(x, y))$ is continuous at $\left(x_{0}, y_{0}\right)$.
$e^{x-y}, \quad \cos \frac{x y}{x^{2}+1}, \quad \ln \left(1+x^{2} y^{2}\right) \quad$ are continuous at every point (x, y).
Functions of More Than Two Variables

$$
\lim _{P \rightarrow(1,0,-1)} \frac{e^{x+z}}{z^{2}+\cos \sqrt{x y}}=\frac{e^{1-1}}{(-1)^{2}+\cos 0}=\frac{1}{2}
$$

Exercises

جَــامعة
الْمَــنارة

- $\lim _{\substack{(x, y) \rightarrow(0,0) \\ x \neq y}} \frac{x-y+2 \sqrt{x}-2 \sqrt{y}}{\sqrt{x}-\sqrt{y}}=2$

$$
\lim _{\substack{(x, y)(4,3) \\ x \neq y+1}} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}=\frac{1}{4} \lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=1
$$

At what points (x, y) in the plane are the functions continuous?

$$
f(x, y)=\frac{x+y}{x-y} \quad g(x, y)=\frac{x^{2}+y^{2}}{x^{2}-3 x+2}
$$

OAt what points (x, y, z) in space are the functions continuous?

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}-1}
$$

$$
h(x, y, z)=\frac{1}{|y|+|z|}
$$

All (x, y, z) except the interior of the cylinder

$$
h(x, y, z)=\frac{1}{|x y|+|z|}
$$

$$
x^{2}+y^{2}=1
$$

$$
\text { All }(x, y, z) \text { except }(x, 0,0)
$$

$$
\text { All }(x, y, z) \text { except }(0, y, 0) \text { or }(x, 0,0)
$$

- By considering different paths of approach, show that the functions have no limit as $(x, y) \rightarrow(0,0)$.

$$
f(x, y)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}} \quad \text { along } y=k x^{2} \quad f(x, y)=\frac{x y}{|x y|} \quad \underset{\substack{k \neq 0}}{\text { along } y=k x}
$$

Exercises

define $f(0,0)$ in a way that extends f to be continuous at the origin.

$$
\begin{array}{cc}
f(x, y)=\ln \left(\frac{3 x^{2}-x^{2} y^{2}+3 y^{2}}{x^{2}+y^{2}}\right) & f(x, y)=\frac{3 x^{2} y}{x^{2}+y^{2}} \\
f(0,0)=\ln 3 & f(0,0)=0
\end{array}
$$

Partial Derivatives
جَــامعة
الـَمــنارة
Partial Derivatives of a Function of Two Variables

DEFINITION The partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h},
$$

provided the limit exists.

DEFINITION The partial derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{y} at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{d}{d y} f\left(x_{0}, y\right)\right|_{y=y_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.

EXAMPLE 1 Find the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point $(4,-5)$ if

$$
f(x, y)=x^{2}+3 x y+y-1
$$

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+3 x y+y-1\right)=2 x+3 \cdot 1 \cdot y+0-0=2 x+3 y
$$

$\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+3 x y+y-1\right)=0+3 \cdot x \cdot 1+1-0=3 x+1$.
EXAMPLE 3 Find f_{x} and f_{y} as functions if

$$
f(x, y)=\frac{2 y}{y+\cos x} .
$$

$f_{x}=\frac{\partial}{\partial x}\left(\frac{2 y}{y+\cos x}\right)=\frac{2 y \sin x}{(y+\cos x)^{2}}$.

$$
f_{y}=\frac{\partial}{\partial y}\left(\frac{2 y}{y+\cos x}\right)=\frac{2 \cos x}{(y+\cos x)^{2}} .
$$

Partial Derivatives

EXAMPLE $4 \quad$ Find $\partial z / \partial x$ assuming that the equation

$$
y z-\ln z=x+y
$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

$$
\frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial x} \ln z=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial x} \quad \longleftrightarrow \quad \frac{\partial z}{\partial x}=\frac{z}{y z-1}
$$

EXAMPLE 5 The plane $x=1$ intersects the paraboloid $z=x^{2}+y^{2}$ in a parabola Find the slope of the tangent to the parabola at $(1,2,5)$ (Figure 14.19).

$$
\left.\frac{\partial z}{\partial y}\right|_{(1,2)}=\left.\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)\right|_{(1,2)}=\left.2 y\right|_{(1,2)}=2(2)=4
$$

Partial Derivatives

EXAMPLE 7 If resistors of R_{1}, R_{2}, and R_{3} ohms are connected in parallel to make an
R-ohm resistor, the value of R can be found from the equation

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

(Figure 14.20). Find the value of $\partial R / \partial R_{2}$ when $R_{1}=30, R_{2}=45$, and $R_{3}=90$ ohms.
$\frac{\partial}{\partial R_{2}}\left(\frac{1}{R}\right)=\frac{\partial}{\partial R_{2}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)$
$-\frac{1}{R^{2}} \frac{\partial R}{\partial R_{2}}=0-\frac{1}{R_{2}{ }^{2}}+0$

$$
\frac{\partial R}{\partial R_{2}}=\frac{R^{2}}{R_{2}{ }^{2}}=\left(\frac{R}{R_{2}}\right)^{2}
$$

When $R_{1}=30, R_{2}=45$, and $R_{3}=90$,
$\frac{1}{R}=\frac{1}{30}+\frac{1}{45}+\frac{1}{90}=\frac{3+2+1}{90}=\frac{6}{90}=\frac{1}{15} \quad \square \quad \frac{\partial R}{\partial R_{2}}=\left(\frac{15}{45}\right)^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$

Thus at the given values, a small change in the resistance R_{2} leads to a change in R about $1 / 9$ th as large.

Partial Derivatives

Second-Order Partial Derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}} \text { or } f_{x x}, \quad \frac{\partial^{2} f}{\partial y^{2}} \text { or } f_{y y}
$$

$$
\frac{\partial^{2} f}{\partial x \partial y} \text { or } f_{y x}, \quad \text { and } \quad \frac{\partial^{2} f}{\partial y \partial x} \text { or } f_{x y}
$$

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

EXAMPLE 9 If $f(x, y)=x \cos y+y e^{x}$, find the second-order derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial y \partial x}, \quad \frac{\partial^{2} f}{\partial y^{2}}, \quad \text { and } \quad \frac{\partial^{2} f}{\partial x \partial y} .
$$

$$
\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=y e^{x} . & \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=-x \cos y \\
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=-\sin y+e^{x} & \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=-\sin y+e^{x}
\end{array}
$$

Partial Derivatives

The Mixed Derivative Theorem

THEOREM 2-The Mixed Derivative Theorem

If $f(x, y)$ and its partial derivatives $f_{x}, f_{y}, f_{x y}$, and $f_{y x}$ are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

EXAMPLE 10 Find $\frac{\partial^{2} w}{\partial x \partial y}$ if

$$
w=x y+\frac{e^{y}}{y^{2}+1} .
$$

Partial Derivatives of Still Higher Order
$\frac{\partial^{3} f}{\partial x \partial y^{2}}=f_{y y x}, \quad \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}=f_{y y x x}$
EXAMPLE 11 Find $f_{y x y z}$ if $f(x, y, z)=1-2 x y^{2} z+x^{2} y$.

Exercises

- find $\partial f / \partial x$ and $\partial f / \partial y . \quad f(x, y)=x^{y} \quad f(x, y)=\cos ^{2}\left(3 x-y^{2}\right)$
- Find all the second-order partial derivatives of the functions

$$
w=x \sin \left(x^{2} y\right) \quad g(x, y)=\cos x^{2}-\sin 3 y
$$

- Which order of differentiation will calculate $f_{x y}$ faster: x first or y first? Try to answer without writing anything down.
$f(x, y)=y+(x / y)$

$$
f(x, y)=x \ln x y
$$

(c) x first
(f) y first

- Let $f(x, y)=2 x+3 y-4$. Find the slope of the line tangent to

$$
\begin{gathered}
m=3 \\
m=2
\end{gathered}
$$

this surface at the point $(2,-1)$ and lying in the a. plane $x=2$
b. plane $y=-1$.

- find a function $z=f(x, y)$ whose partial derivatives are as given

$$
\frac{\partial f}{\partial x}=3 x^{2} y^{2}-2 x, \quad \frac{\partial f}{\partial y}=2 x^{3} y+6 y \quad f(x, y)=x^{3} y^{2}-x^{2}+3 y^{2}
$$

Exercises

حَـامعة
الـمَــنارة

- Find the value of $\partial z / \partial x$ at the point $(1,1,1)$ if the equation

$$
\frac{\partial \vec{\partial}}{\partial x}=-2
$$

$$
x y+z^{3} x-2 y z=0
$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

- Express v_{x} in terms of u and y if the equations $x=v \ln u$ and $y=u \ln v$ define u and v as functions of the independent variables x and y, and if v_{x} exists.

$$
\frac{\ln v}{(\ln u)(\ln v)-1}
$$

- The three-dimensional Laplace equation

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0 \\
& f(x, y, z)=x^{2}+y^{2}-2 z^{2}
\end{aligned}
$$

- one-dimensional wave equation

$$
\begin{gathered}
\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}, \\
w=5 \cos (3 x+3 c t)+e^{x+c t}
\end{gathered}
$$

The two-dimensional Laplace equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0, \quad f(x, y)=\ln \sqrt{x^{2}+y^{2}}
$$

The heat equation An important partial differential equation that describes the distribution of heat in a region at time t can be represented by the one-dimensional heat equation

$$
\frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}} . \quad u(x, t)=\sin (\alpha x) \cdot e^{-\beta t}
$$

The Chain Rule

حَــامعة

الـَمــنارة

THEOREM 5-Chain Rule For Functions of One Independent Variable

 and Two Intermediate VariablesIf $w=f(x, y)$ is differentiable and if $x=x(t), y=y(t)$ are differentiable functions of t, then the composition $w=f(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d w}{d t}=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t),
$$

or

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} .
$$

Chain Rule

Dependent variable

Intermediate variables

Independent variable

EXAMPLE 1 Use the Chain Rule to find the derivative of

$$
w=x y
$$

with respect to t along the path $x=\cos t, y=\sin t$. What is the derivative's value at $t=\pi / 2$?

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\left.\frac{\partial w}{\partial y} \frac{d y}{d t} \quad \square \frac{d w}{d t}\right|_{t=\pi / 2}=\cos \left(2 \frac{\pi}{2}\right)=\cos \pi=-1
$$

The Chain Rule

جَــامعة
الـمَـنارة

THEOREM 6-Chain Rule for Functions of One Independent Variable and Three Intermediate Variables
If $w=f(x, y, z)$ is differentiable and x, y, and z are differentiable functions of t, then w is a differentiable function of t and

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

EXAMPLE 2 Find $d w / d t$ if

$$
w=x y+z, \quad x=\cos t, \quad y=\sin t, \quad z=t .
$$

In this example the values of $w(t)$ are changing along the path of a helix (Section 13.1) as t changes. What is the derivative's value at $t=0$?

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=1+\cos 2 t,
$$

$$
\left.\frac{d w}{d t}\right|_{t=0}=1+\cos (0)=2
$$

Chain Rule

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

The Chain Rule

THEOREM 7-Chain Rule for Two Independent Variables and Three Intermediate Variables
Suppose that $w=f(x, y, z), x=g(r, s), y=h(r, s)$, and $z=k(r, s)$. If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$
\begin{aligned}
& \frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \\
& \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} .
\end{aligned}
$$

$\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$

The Chain Rule

EXAMPLE $3 \quad$ Express $\partial w / \partial r$ and $\partial w / \partial s$ in terms of r and s if

$$
w=x+2 y+z^{2}, \quad x=\frac{r}{s}, \quad y=r^{2}+\ln s, \quad z=2 r .
$$

$\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=\frac{1}{s}+12 r$
$\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}=\frac{2}{s}-\frac{r}{s^{2}}$
EXAMPLE $4 \quad$ Express $\partial w / \partial r$ and $\partial w / \partial s$ in terms of r and s if

$$
w=x^{2}+y^{2}, \quad x=r-s, \quad y=r+s .
$$

$\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}=4 r$

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}=4 s
$$

The Chain Rule

Implicit Differentiation Revisited

THEOREM 8-A Formula for Implicit Differentiation

Suppose that $F(x, y)$ is differentiable and that the equation $F(x, y)=0$ defines y as a differentiable function of x. Then at any point where $F_{y} \neq 0$,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} . \tag{1}
\end{equation*}
$$

EXAMPLE 5 Use Theorem 8 to find $d y / d x$ if $y^{2}-x^{2}-\sin x y=0$.
$F(x, y)=y^{2}-x^{2}-\sin x y$.
$\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{-2 x-y \cos x y}{2 y-x \cos x y}=\frac{2 x+y \cos x y}{2 y-x \cos x y}$

The Chain Rule

$F(x, y, z)=0$

$$
\begin{equation*}
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \quad \text { and } \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}} \tag{2}
\end{equation*}
$$

EXAMPLE 6 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(0,0,0)$ if $x^{3}+z^{2}+y e^{r z}+z \cos y=0$.

$$
F(x, y, z)=x^{3}+z^{2}+y e^{k z}+z \cos y
$$

$$
F_{x}=3 x^{2}+z y e^{r z}, \quad F_{y}=e^{r z}-z \sin y, \quad \text { and } \quad F_{z}=2 z+x y e^{r z}+\cos y
$$

$$
F(0,0,0)=0, F_{z}(0,0,0)=1 \neq 0
$$

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{3 x^{2}+z y e^{r z}}{2 z+x y e^{r z}+\cos y}
$$

$$
\text { and } \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{e^{r z}-z \sin y}{2 z+x y e^{r z}+\cos y}
$$

$$
\text { At }(0,0,0) \text { we find } \quad \frac{\partial z}{\partial x}=-\frac{0}{1}=0 \quad \text { and } \quad \frac{\partial z}{\partial y}=-\frac{1}{1}=-1 \text {. }
$$

Exercises

(a) express $\mathrm{dw} / \mathrm{dt}$ as a function of t , both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate $d w / d t$ at the given value

$$
\begin{aligned}
& w=x^{2}+y^{2}, \quad x=\cos t, \quad y=\sin t ; \quad t=\pi \quad \frac{d w}{d t}=0 \\
& w=2 y e^{x}-\ln z, \quad x=\ln \left(t^{2}+1\right), \quad y=\tan ^{-1} t, \quad z=e^{t} ; \quad 4 t \tan ^{-1} t+1 \quad \pi+1 \\
& t=1
\end{aligned}
$$

- Find the values of $\partial z / \partial x$ and $\partial z / \partial y$ at the points

$$
\sin (x+y)+\sin (y+z)+\sin (x+z)=0, \quad(\pi, \pi, \pi) \quad \frac{\partial z}{\partial x}(\pi, \pi, \pi)=-1 \quad \frac{\partial z}{\partial y}(\pi, \pi, \pi)=-1
$$

- Find $\partial w / \partial r$ when $r=1, s=-1$ if $w=(x+y+z)^{2}, x=r-s, y=\cos (r+s), z=\sin (r+s)$.
- Changing voltage in a circuit The voltage V in a circuit that satisfies the law $V=I R$ is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$
\frac{d V}{d t}=\frac{\partial V}{\partial I} \frac{d I}{d t}+\frac{\partial V}{\partial R} \frac{d R}{d t}
$$

to find how the current is changing at the instant when $R=600 \mathrm{ohms}, I=0.04 \mathrm{amp}, d R / d t=0.5 \mathrm{ohm} / \mathrm{sec}$, and $d V / d t=-0.01 \mathrm{volt} / \mathrm{sec}$.

$$
\frac{d I}{d t}=-0.00005 \mathrm{amps} / \mathrm{sec}
$$

Exercises

- Temperature on an ellipse Let $T=g(x, y)$ be the temperature at the point (x, y) on the ellipse

$$
x=2 \sqrt{2} \cos t, \quad y=\sqrt{2} \sin t, \quad 0 \leq t \leq 2 \pi
$$

and suppose that

$$
\frac{\partial T}{\partial x}=y, \quad \frac{\partial T}{\partial y}=x
$$

a. Locate the maximum and minimum temperatures on the ellipse by examining $d T / d t$ and $d^{2} T / d t^{2}$.
b. Suppose that $T=x y-2$. Find the maximum and minimum values of T on the ellipse.
$t=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$ maximum at $(x, y)=(2,1)$ minimum at $(x, y)=(-2,1)$ maximum at $(x, y)=(-2,-1)$ minimum at $(x, y)=(2,-1)$ $T(2,1)=T(-2,-1)=0 \quad T(-2,1)=T(2,-1)=-4$,

Directional Derivatives and Gradient Vectors

 Directional Derivatives in the Plane
provided the limit exists.
EXAMPLE 1 Using the definition, find the derivative of

$$
f(x, y)=x^{2}+x y
$$

at $P_{0}(1,2)$ in the direction of the unit vector $\mathbf{u}=(1 / \sqrt{2}) \mathbf{i}+(1 / \sqrt{2}) \mathbf{j}$.

$$
\begin{aligned}
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}} & =\lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s}=\lim _{s \rightarrow 0} \frac{f\left(1+s \cdot \frac{1}{\sqrt{2}}, 2+s \cdot \frac{1}{\sqrt{2}}\right)-f(1,2)}{s} \\
& =\lim _{s \rightarrow 0} \frac{\left(1+\frac{s}{\sqrt{2}}\right)^{2}+\left(1+\frac{s}{\sqrt{2}}\right)\left(2+\frac{s}{\sqrt{2}}\right)-\left(1^{2}+1 \cdot 2\right)}{s}=\frac{5}{\sqrt{2}} .
\end{aligned}
$$

DEFINITION The derivative of f at $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\boldsymbol{u}_{\mathbf{1}} \mathbf{i}+u_{2} \mathbf{j}$ is the number

$$
\begin{equation*}
\left(\frac{d f}{d s}\right)_{\mathrm{u}, P_{0}}=\lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s} \tag{1}
\end{equation*}
$$

Interpretation of the Directional Derivative

The equation $z=f(x, y)$ represents a surface S in space. If $z_{0}=f\left(x_{0}, y_{0}\right)$, then the point $P\left(x_{0}, y_{0}, z_{0}\right)$ lies on S. The vertical plane that passes through P and $P_{0}\left(x_{0}, y_{0}\right)$ parallel to \mathbf{u} intersects S in a curve C (Figure 14.28). The rate of change of f in the direction of \mathbf{u} is the slope of the tangent to C at P in the right-handed system formed by the vectors \mathbf{u} and \mathbf{k}.

When $\mathbf{u}=\mathbf{i}$, the directional derivative at P_{0} is $\partial f / \partial x$ evaluated at $\left(x_{0}, y_{0}\right)$. When $\mathbf{u}=\mathbf{j}$, the directional derivative at P_{0} is $\partial f / \partial y$ evaluated at $\left(x_{0}, y_{0}\right)$. The directional derivative generalizes the two partial derivatives. We can now ask for the rate of change of f in any direction \mathbf{u}, not just the directions \mathbf{i} and \mathbf{j}.

For a physical interpretation of the directional derivative, suppose that $T=f(x, y)$ is the temperature at each point (x, y) over a region in the plane. Then $f\left(x_{0}, y_{0}\right)$ is the temperature at the point $P_{0}\left(x_{0}, y_{0}\right)$ and $\left.D_{\mathrm{u}} f\right|_{P_{0}}$ is the instantaneous rate of change of the tem-
 perature at P_{0} stepping off in the direction \mathbf{u}.

$$
\begin{array}{r}
x=x_{0}+s u_{1}, \quad y=y_{0}+s u_{2}, \\
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\left.\frac{\partial f}{\partial x}\right|_{P_{0}} \frac{d x}{d s}+\left.\frac{\partial f}{\partial y}\right|_{P_{0}} \frac{d y}{d s}=\left.\frac{\partial f}{\partial x}\right|_{P_{0}} u_{1}+\left.\frac{\partial f}{\partial y}\right|_{P_{0}} u_{2}=\left[\left.\frac{\partial f}{\partial x}\right|_{P_{0}} \mathbf{i}+\left.\frac{\partial f}{\partial y}\right|_{P_{0}} \mathbf{j}\right] \cdot\left[u_{1} \mathbf{i}+u_{2} \mathbf{j}\right]
\end{array}
$$

$$
\text { Gradient of } f \text { at } P_{0} \quad \text { Direction } \mathbf{u}
$$

DEFINITION The gradient vector (or gradient) of $f(x, y)$ is the vector

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

The value of the gradient vector obtained by evaluating the partial derivatives at a point $P_{0}\left(x_{0}, y_{0}\right)$ is written

$$
\left.\nabla f\right|_{P_{0}} \quad \text { or } \quad \nabla f\left(x_{0}, y_{0}\right) .
$$

Calculation and Gradients

THEOREM 9-The Directional Derivative Is a Dot Product

 If $f(x, y)$ is differentiable in an open region containing $P_{0}\left(x_{0}, y_{0}\right)$, then$$
\begin{equation*}
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\left.\nabla f\right|_{P_{0}} \cdot \mathbf{u} \tag{4}
\end{equation*}
$$

the dot product of the gradient ∇f at P_{0} with the vector \mathbf{u}. In brief, $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$.

EXAMPLE 2 Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the
 direction of $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$.
$\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{v}}{5}=\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j} \cdot f_{x}(2,0)=\left.\left(e^{y}-y \sin (x y)\right)\right|_{(2,0)}=e^{0}-0=1 \quad f_{y}(2,0)=\left.\left(x e^{y}-x \sin (x y)\right)\right|_{(2,0)}=2 e^{0}-2 \cdot 0=2$.
$\left.\nabla f\right|_{(2,0)}=f_{x}(2,0) \mathbf{i}+f_{y}(2,0) \mathbf{j}=\mathbf{i}+2 \mathbf{j}$
$\left.D_{\mathbf{u}} f\right|_{(2,0)}=\left.\nabla f\right|_{(2,0)} \cdot \mathbf{u}=(\mathbf{i}+2 \mathbf{j}) \cdot\left(\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}\right)=\frac{3}{5}-\frac{8}{5}=-1$

حَــامعة
الـمَـنارة
, minume
Properties of the Directional Derivative $D_{\mathrm{u}} f=\nabla f \cdot \mathrm{u}=|\nabla f| \cos \theta$

1. The function f increases most rapidly when $\cos \theta=1$, which means that $\theta=0$ and \mathbf{u} is the direction of ∇f. That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is

$$
D_{\mathrm{u}} f=|\nabla f| \cos (0)=|\nabla f| .
$$

2. Similarly, f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\mathrm{u}} f=|\nabla f| \cos (\pi)=-|\nabla f|$.
3. Any direction \mathbf{u} orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals $\pi / 2$ and

$$
D_{\mathrm{u}} f=|\nabla f| \cos (\pi / 2)=|\nabla f| \cdot 0=0 .
$$

حَـامعة
الـَمــنارة
EXAMPLE 3 Find the directions in which $f(x, y)=\left(x^{2} / 2\right)+\left(y^{2} / 2\right)$
(a) increases most rapidly at the point $(1,1)$, and
(b) decreases most rapidly at $(1,1)$.
(c) What are the directions of zero change in f at $(1,1)$?
(a) The function increases most rapidly in the direction of ∇f at $(1,1)$. The gradient there is

$$
\begin{array}{r}
\left.\nabla f\right|_{(1,1)}=\left.(x \mathbf{i}+y \mathbf{j})\right|_{(1,1)}=\mathbf{i}+\mathbf{j} . \\
\mathbf{u}=\frac{\mathbf{i}+\mathbf{j}}{|\mathbf{i}+\mathbf{j}|}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{(1)^{2}+(1)^{2}}}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} .
\end{array}
$$

(b) The function decreases most rapidly in the direction of $-\nabla f$ at $(1,1)$, which is

$$
-\mathbf{u}=-\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j} .
$$

(c) The directions of zero change at $(1,1)$ are the directions orthogonal to ∇f :

$$
\mathbf{n}=-\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} \quad \text { and } \quad-\mathbf{n}=\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j} .
$$

Gradients and Tangents to Level Curves

حَـامعة
الـَمــنارة
If a differentiable function $f(x, y)$ has a constant value c along a smooth curve
The level curve $f(x, y)=f\left(x_{0}, y_{0}\right)$ $\mathbf{r}=g(t) \mathbf{i}+h(t) \mathbf{j}$ (making the curve part of a level curve of f), then $f(g(t), h(t))=c$.

$$
\begin{aligned}
& \left.f(g(t), h(t))=c . \quad \begin{array}{r}
\mathbf{r}=g(t) \mathbf{i}+h(t) \mathbf{j} \\
\frac{d}{d t} f(g(t), h(t))=\frac{d}{d t}(c) \quad \\
\underbrace{\left(\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}\right)}_{\nabla f} \cdot(\underbrace{\frac{d g}{d t} \frac{d g}{d t}+\frac{\partial f}{\partial y} \frac{d h}{d t}=0}_{\frac{d \mathbf{r}}{d t}} \\
\left.\nabla f\right|_{\left(x_{0}, y_{0}\right)}=f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}
\end{array}, \nabla f \perp \frac{d r}{d t} \mathbf{j}\right)
\end{aligned}
$$

Tangent Line to a Level Curve

$$
\begin{equation*}
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0 \tag{6}
\end{equation*}
$$

Gradients and Tangents to Level Curves

EXAMPLE 4 Find an equation for the tangent to the ellipse

$$
\frac{x^{2}}{4}+y^{2}=2
$$

(Figure 14.32) at the point $(-2,1)$.

$$
\begin{aligned}
& f(x, y)=\frac{x^{2}}{4}+y^{2} .\left.\quad \nabla f\right|_{(-2,1)}=\left.\left(\frac{x}{2} \mathbf{i}+2 y \mathbf{j}\right)\right|_{(-2,1)}=-\mathbf{i}+2 \mathbf{j} . \\
& (-1)(x+2)+(2)(y-1)=0 \quad \longrightarrow \quad x-2 y=-4 .
\end{aligned}
$$

Algebra Rules for Gradients

1. Sum Rule:
2. Difference Rule:
3. Constant Multiple Rule:
4. Product Rule:
5. Quotient Rule:

$$
\left.\begin{array}{l}
\nabla(f+g)=\nabla f+\nabla g \\
\nabla(f-g)=\nabla f-\nabla g \\
\nabla(k f)=k \nabla f \quad \text { (any number } k \text {) } \\
\nabla(f g)=f \nabla g+g \nabla f \\
\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}
\end{array}\right\} \begin{aligned}
& \text { Scalar multipliers on } \\
& \text { left of gradients }
\end{aligned}
$$

Functions of Three Variables

جَـامعة
الـَـــنارة

$$
\begin{aligned}
& \mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k} \\
& D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=\frac{\partial f}{\partial x} u_{1}+\frac{\partial f}{\partial y} u_{2}+\frac{\partial f}{\partial z} u_{3} . \quad \begin{array}{l}
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta=|\nabla f| \cos \theta
\end{array}, \frac{\partial f}{\partial z} \mathbf{k} \\
&
\end{aligned}
$$

EXAMPLE 6
(a) Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$.
(b) In what directions does f change most rapidly at P_{0}, and what are the rates of change in these directions?

$$
\begin{aligned}
& \mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}+\frac{6}{7} \mathbf{k} \quad f_{x}=\left.\left(3 x^{2}-y^{2}\right)\right|_{(1,1,0)}=2, \quad f_{y}=-\left.2 x y\right|_{(1,1,0)}=-2, \quad f_{z}=-\left.1\right|_{(1,1,0)}=-1 \\
& \left.\nabla f\right|_{(1,1,0)}=2 \mathbf{i}-2 \mathbf{j}-\left.\mathbf{k} \quad D_{\mathbf{u}} f\right|_{(1,1,0)}=\left.\nabla f\right|_{(1,1,0)} \cdot \mathbf{u}=(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}) \cdot\left(\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}\right)=\frac{4}{7}
\end{aligned}
$$

(b) The function increases most rapidly in the direction of $\nabla f=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ and decreases most rapidly in the direction of $-\nabla f$. The rates of change in the directions are, respectively,

$$
|\nabla f|=\sqrt{(2)^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{9}=3 \quad \text { and } \quad-|\nabla f|=-3 .
$$

The Chain Rule for Paths

If $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ is a smooth path $C \quad w=f(\mathbf{r}(t))$ is a scalar function evaluated along C.

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} .
$$

The Derivative Along a Path

$$
\begin{equation*}
\frac{d}{d t} f(\mathbf{r}(t))=\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \tag{7}
\end{equation*}
$$

Exercises

حَـامعة
الْمَــنارة

- find ∇f at the given point.

$$
f(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right) z+\tan ^{-1} x z ; \quad(1,1,1) \quad \nabla f=-\frac{11}{2} \mathbf{i}-6 \mathbf{j}+\frac{1}{2} \mathbf{k}
$$

- find the derivative of the function at P_{0} in the direction of \mathbf{u}.

$$
\begin{array}{lr}
h(x, y)=\tan ^{-1}(y / x)+\sqrt{3} \sin ^{-1}(x y / 2), \quad P_{0}(1,1), \mathbf{u}=3 \mathbf{i}-2 \mathbf{j} & \left(D_{\mathbf{u}} h\right)_{P_{0}}=\nabla h \cdot \mathbf{u}=\frac{3}{2 \sqrt{13}}-\frac{6}{2 \sqrt{13}}=-\frac{3}{2 \sqrt{13}} \\
h(x, y, z)=\cos x y+e^{y z}+\ln z x, \quad P_{0}(1,0,1 / 2), \mathbf{u}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k} & \left(D_{\mathbf{u}} h\right)_{P}=\nabla h \cdot \mathbf{u}=\frac{1}{3}+\frac{1}{3}+\frac{4}{3}=2
\end{array}
$$

- find the directions in which the functions increase and decrease most rapidly at P_{0}. Then find the derivatives of the functions in these directions

$$
\begin{aligned}
f(x, y, z)=\ln x y+\ln y z+\ln x z, \quad P_{0}(1,1,1) \quad \begin{aligned}
& \mathbf{u}=\frac{1}{\sqrt{3}} \mathbf{i}+\frac{1}{\sqrt{3}} \mathbf{j}+\frac{1}{\sqrt{3}} \mathbf{k} \quad-\mathbf{u}=-\frac{1}{\sqrt{3}} \mathbf{i}-\frac{1}{\sqrt{3}} \mathbf{j}-\frac{1}{\sqrt{3}} \mathbf{k} \\
&\left(D_{\mathbf{u}} f\right)_{P_{\mathrm{n}}}=\nabla f \cdot \mathbf{u}=|\nabla f|=2 \sqrt{3} \text { and }\left(D_{-\mathbf{u}} f\right)_{P_{\mathrm{n}}}=-2 \sqrt{3}
\end{aligned}
\end{aligned}
$$

- sketch the curve $f(x, y)=c$ together with ∇f and the tangent line at the given point. Then write an equation for the tangent line.

$$
x^{2}+y^{2}=4, \quad(\sqrt{2}, \sqrt{2})
$$

Tangent Planes and Differentials

Tangent Planes and Normal Lines

DEFINITIONS The tangent plane to the level surface $f(x, y, z)=c$ of a differentiable function f at a point P_{0} where the gradient is not zero is the plane through P_{0} normal to $\left.\nabla f\right|_{P_{0}}$.
The normal line of the surface at P_{0} is the line through P_{0} parallel to $\left.\nabla f\right|_{P_{0}}$.

$$
f(x, y, z)=c
$$

Tangent Plane to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
\begin{equation*}
f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)=0 \tag{1}
\end{equation*}
$$

Normal Line to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
\begin{equation*}
x=x_{0}+f_{x}\left(P_{0}\right) t, \quad y=y_{0}+f_{y}\left(P_{0}\right) t, \quad z=z_{0}+f_{z}\left(P_{0}\right) t \tag{2}
\end{equation*}
$$

Tangent Planes and Differentials

Tangent Planes and Normal Lines

EXAMPLE 1 Find the tangent plane and normal line of the level surface

$$
f(x, y, z)=x^{2}+y^{2}+z-9=0 \quad \text { A circular paraboloid }
$$

at the point $P_{0}(1,2,4)$.

$$
\left.\nabla f\right|_{P_{0}}=\left.(2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k})\right|_{(1,2,4)}=2 \mathbf{i}+4 \mathbf{j}+\mathbf{k}
$$

The tangent plane is $2(x-1)+4(y-2)+(z-4)=0, \quad$ or $\quad 2 x+4 y+z=14$.

The line normal to the surface at P_{0} is $x=1+2 t, \quad y=2+4 t, \quad z=4+t$.

Tangent Planes and Differentials

Plane Tangent to a Surface $z=f(x, y)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$
The plane tangent to the surface $z=f(x, y)$ of a differentiable function f at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\begin{equation*}
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0 \tag{3}
\end{equation*}
$$

EXAMPLE 3 The surfaces

$$
f(x, y, z)=x^{2}+y^{2}-2=0 \quad \text { A cylinder and } g(x, y, z)=x+z-4=0
$$

meet in an ellipse E (Figure 14.35). Find parametric equations for the line tangent to E at the point $P_{0}(1,1,3)$.
The tangent line is orthogonal to both ∇f and ∇g at P_{0}
\longmapsto Parallel to $\mathbf{v}=\nabla f \times \nabla g$

$$
\begin{aligned}
& \left.\nabla f\right|_{(1,1,3)}=\left.(2 x \mathbf{i}+2 y \mathbf{j})\right|_{(1,1,3)}=2 \mathbf{i}+\left.2 \mathbf{j} \quad \nabla g\right|_{(1,1,3)}=\left.(\mathbf{i}+\mathbf{k})\right|_{(1,1,3)}=\mathbf{i}+\mathbf{k} \\
& \mathbf{v}=(2 \mathbf{i}+2 \mathbf{j}) \times(\mathbf{i}+\mathbf{k})=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 2 & 0 \\
1 & 0 & 1
\end{array}\right|=2 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k} \quad \longrightarrow x=1+2 t, \quad y=1-2 t, \quad z=3-2 t .
\end{aligned}
$$

