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Line Integrals of Vector Fields o)lioll

DEFINITION Let F be a vector field with continuous components defined
along a smooth curve C parametrized by r{f), « = t = b. Then the line integral

of F along C is
fF-Tfrx=f(F-j‘f) ds =/F-a’r. 1)
C c y C

Evaluating the Line Integral of F = Mi + Nj + Pk Along
C:r(t) = g()i + hi(t)j) + k(nk

1. Express the vector field F along the parametrized curve C as F(r(f)) by substi-
tuting the components x = g(r), y = h(t), z = k(t) of r into the scalar compo-
nents M(x, v, z), Nix, v, 2), P(x, v, z) of F.

2. Find the derivative (velocity) vector dr/dt.

3. Evaluate the line integral with respect to the parameter f,a = t = b, to

obtain
g d
f F-dr = / F(r(r}J-Trdr. (2)
c . elt
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Line Integrals of Vector Fields

EXAMPLE 2 Evaluate f ~F-dr, where F(x,y,2) =zi + xyj — ¥’k along the
curve C given by r(#) = i + 1j + Vtk, 0 = ¢t = 1 and shown in Figure 16.18.

Far() = Vii+ £fj— P~k = Vim=r—v=-¢
dr . . 1
—=2n+j+ —k
dt 2V1

! I
e — dr 32 4 3 _ 1 3;1) _ 17
LF dr —/; Fir()) I E.!II—/; (Er +r -5t dt = 50"

The curve (in red) winds
through the vector field in
Example 2. The line integral
is determined by the vectors
that lie along the curve.
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Line Integrals with Respect to dx, dy, or dz 6)liaJl
F =My 2i hzwihé a component only in the x-direction
rif) = g(oi + h(Nj + kink fora =t = b, x = g(f), dx = g'(t) dt

Fedr = F-ﬁu‘r = M(x,y, i (g"(0i + K'(Oj + K'(Ok)dt = M(x, v, 2)g'(t) dt = M(x, y, 2) dx.

fM{x, v, z) dx =f F-dr, where F = M(x,y, z)i
C iy

b
/ M(x, y,z)dx = f M(g(0), h(D), k(1)) g'(1) dt (3)
[y i
b
f N(x, y, D) dy = f N(g(0), h(r), k(1)) h'(£) dt ()
C o
b
f Plx,y,z)dz = f P(g(t), h(1), k(1)) &'(1) dt (3)
C a
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(

.

/F*dr=/M(x,y,z)dx +/N(x,y,z)dy +fP(x,y,z)dz =/de+Ndy+sz.
C C C C C

~\

J

Line Integrals with Respect to dx, dy, or dz

EXAMPLE 3 Evaluate the line integral | ;:7_3’ dx + zdy + 2x dz, where C is the
helix r(f) = (cosHi + (sin)j + tk, 0 =t = 27,

xr=cost, v=sintf z =t and dx = —sintdt, dv = cos tdt, dz = dt.

f—}-‘dx + zdy + 2xdz =
i

0

27

[(—sin H(—sinf) + tcost + 2cost] dt = 7.

https://manara.edu.sy/ g
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Work Done by a Force over a Curve in Space

W= >W = ZFtrm,zk:r T(xp, ¥y 7) A, —) F-Tds.
k=1

n—ooand As, — (), C

DEFINITION Let C be a smooth curve parametrized by r(f),a = f = b, and
let F be a continuous force field over a region containing C. Then the work done
in moving an object from the point A = r{a) to the point B = r(b) along C is

b
=fF-Ta’s =f F{r{r}]-%dr. (6)
C P
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Work Done by a Force over a Curve in Space

TABLE 16.2 Different ways to write the work integral for F = Mi + Nj + Pk
overthe curve C:r(f) = g(t)ii + h(Nj + k(ik,a =t = b

W= / F-Téds The definition
e
= / F-dr Vector differential form
c
b dr
= / F- I A Parametric vector evaluation

b
= / (M g'(f) + Nh'(H) + Pf-:’[r]).ﬂ’r Parametric scalar evaluation

= / Mdyx+ Ndy + Pdz Scalar differential form
c
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Work Done by a Force over a Curve in Space

EXAMPLE 4  Find the work done by the force field F = (y — x3)i + (z — y3)j +
(x — z%)k in moving an object along the curve r(f) = ti + £j + £k, 0 =t = 1, from
(0, 0,0)to (1, 1, 1) (Figure 16.21).

F=(y—22)i+(z—»)j+ (x—2)k

= {IE - Iz}i + {I?' - fd'}j + {I - 1'5}]{‘ Substitute x = ¢,y = %,z = 1.
ar —(n + 2 + Fk) =1 + 2tj + 3rk
dt i
F-% = (F — )20 + (r — 5)(3¢2) = 2¢* — 25 + 3 — 348,

’ 29
Work = / F*—df_ / (26 — 265+ 38 — 38) dr = &

https://manara.edu.sy/
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Flow Integrals and Circulation for Velocity Fields s

DEFINITION If r(f) parametrizes a smooth curve C in the domain of a continu-
ous velocity field F, the flow along the curve from A = r{a) to B = rib) is

Flow =fF*T.|:!s. (7
C

The integral is called a flow integral. If the curve starts and ends at the same
point, so that A = B, the flow is called the circulation around the curve.

EXAMPLE 6 A fluid’s velocity field is F = xi + zj + yk. Find the flow along the
helix r(f) = (cos i + (sin)j + tk,0 =t = /2.

- W - W - ffr 5 - -
F=xi+zj+yk=(cosni+ ]+ (sinnk Substitute x = cost,7 = £,y = sint. i (—sin HI + (cos f)j + K.
dr : .
F- i —sintcost + fcost + sin L
i

=0 w2
Flow = F-Qa’r= (—sinfcost + fcost + sinf) dt =7_1
! dt 0 2 2

=1
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Flow Integrals and Circulation for Velocity Fields

EXAMPLE 7 Find the circulation of the field F = (x — y)i + xj around the circle
r(f) = (cos Hi + (sinnNj, 0 = ¢t = 27 (Figure 16.22).

F=(x—yi+xj=I(cost— sint)i + (cos )],

dr ) . .
— = (—sin Hi + (cos Di.

dr . .
F'E=—51nrc05£—|—s1n1r+m:~:1r

l
i Ir iy
Circulation = f F- f—n’r = f (1 —sintcosf)dt = 24
0 dt 0

As Figure 16.22 suggests, a fluid with this velocity field is circulating counterclockwise
around the circle, so the circulation is positive. O

https://manara.edu.sy/
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Flux Across a Simple Closed Plane Curve
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DEFINITION If C is a smooth simple closed curve in the domain of a continu-
ous vector field F = M{x, y)i + N{x, y)j in the plane, and if n is the outward-
pointing unit normal vector on C, the flux of F across C is

Flux of F across C = f
c

F-n ds. (8)

Simple,
not closed

}%

Mot simple,
not closed

Simple,
closed

Mot simple,
closed

https://manara.edu.sy/
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Flux Across a Simple Closed Plane Curve
- Lk
dv . d.} ﬂt}' . dx . {;[ i.}ll‘ For _t::nuntn:rcluckx?rise
=T x k = _]+_.] Xk=—1—5] — — 0 dy o dx . motion, T ¥ k points
ds s ds els ds s ‘ n |V| — | — J outward.
0 0 I dt dt

If F = M(x, v)i + N(x. v)j.

ﬂl el . — ':I__ elx . c
Frn = M{'T*J;}ﬂf N{r J'}nf.‘: ‘ fCF n cls _f(Md'i N(,[I )ﬂl = fMl‘.’j}' N el -

-
e

Calculating Flux Across a Smooth Closed Plane Curve

For clockwise motion,

Flux of F = Mi + Nj across C = j{M dy — Ndx )] k % T points outward.

The integral can be evaluated from any smooth parametrization x = g(f),
y = h(t), a =t = b, that traces C counterclockwise exactly once.

kxT

https://manara.edu.sy/ 1
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Flux Across a Simple Closed Plane Curve

y
’fﬂ'ﬂfﬂ:_:ﬂ"f_..i—"ﬂ_'--lﬂ_'- e m 'l;I I
EXAMPLE 8  Find the flux of F = (x — y)i + xj across the circle x> + y* = 1 in Py RO
the xy-plane. (The vector field and curve were shown previously in Figure 16.22.) e e LN /
M=x—y=cost— sint{, dy = d(sin t) = cos t df, / il ’ yd
N = x = cost, dx = d(cos 1) = —sin ¢ dr, A Ay 4y
l!."'r 'g" + & - _‘__,_,-"'/
2w n!ll b = """f__;-"’f__ﬂ-’jt
Flux = ngdy — Ndx =/ (cos®t — sinfcost + costsinf)di = | v~ — SR
0
C

The flux of F across the circle is #r. Since the answer is positive, the net flow across the
curve is outward. A net inward flow would have given a negative flux.

https://manara.edu.sy/

13



Y

: 6)lioJl

EXxercises - g

® / vV x + vdx, where C 1s given 1n the accompanying figure
[

2\3-4

@ find the work done by F over the curve in the direction of increasing f.

Pt | —

F=xvi+ y]— vk ) =ti+tj+tk, 0=t=1
@® Evaluate f ¥ + T ds for the vector field F = x’i — yj along the curve x = y* from (4, 2) to (1, —1). —5

@ Find the flow of the velocity field F= (x + y)i — (x* + y?)j along each of the following paths from
(1, 0) to (—1, 0) in the xy-plane.

a. The upper half of the circle x* + y* = 1 b. The line segment from (1, 0) to (—1,0)

_r 0
2

https://manara.edu.sy/
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Exercises YT
@® Find the circulation of the field F = yi + (x + 2y)j around each of the following closed paths.
d. y

(=1, 1) 1 (1,1) b. X2 +y=4

L

S //\\ 0
b N

@ F i1s the velocity field of a fluid flowing through a region in space. Find the flow along the given curve in the direction of
Increasing f.

F = —4xyi + 8yj + 2k )=ti+rj+k 0=r=2 48
® Find the circulation of F = 2xi + 2zj + 2yk around the closed path consisting of the following three curves

.13

C: r(f) = (cost)i + (sing)j +tk, 0=¢=7/2
Cyp r)=j+(m/1 -0k, 0=tr=]I
Cy: rip=ti+(1 -1 0=t=1

Circulation =(=1+7)=7+1=0 x

https://manara.edu.sy/ =
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@® Find the flux of the field F — (x + y)i — (x* + y?)j outward across the triangle with vertices (1, 0), (0, 1), (—1, 0).

1
3
@® The flow of a gas with a density of & = 0.001kg/m" over the closed curve
r(f) = (—sin i + (cos 1)j, 0 = r = 27, is given by the vector field F = dv, where v = xi + y?j is a velocity field

measured in meters per second. Find the flux of F across the curve r(7).
(0.001) 7 kg/s =0.00314 kg/s

https://manara.edu.sy/ &



Y

6)jliaJl

Path Independence, Conservative Fields, and Potential Functions
Path Independence

DEFINITIONS Let F be a vector field defined on an open region D in space,
and suppose that for any two points A and B in D the line integral f c ¥ - dr along
a path C from A to B in D is the same over all paths from A to B. Then the integral

f - F *dr is path independent in D and the field F is conservative on D.

DEFINITION If F is a vector field defined on D and F = V{ for some scalar
function f on D, then f is called a potential function for F.

B B
f FTIT:/ Vf-dr = f(B) — f(A).
A

A

https://manara.edu.sy/
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Path Independence, Conservative Fields, and Potential Functions
Line Integrals in Conservative Fields

THEOREM 1—Fundamental Theorem of Line Integrals
Let C be a smooth curve joining the point A to the point B in the plane or in space
and parametrized by r(f). Let f be a differentiable function with a continuous
gradient vector F = V f on a domain D containing C. Then

f F-dr = f(B) — f(A).
C

|

5

T VT T

EXAMPLE 1 Suppose the force field F = V{ is the gradient of the function  flx, y. 2) = 2

|
I-=*

Find the work done by F in moving an object along a smooth curve C joining (1, 0, 0) to
(0, 0, 2) that does not pass through the origin.

1 3
F.dr = £f(0,0,2) — f(LLO,O)=——(—1)= =.
L dr = £(0,0,2) = §(1,0,0) = —3 — (=) = }

https://manara.edu.sy/ =
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Path Independence, Conservative Fields, and Potential Functions
Line Integrals in Conservative Fields

THEOREM 2—Conservative Fields are Gradient Fields

Let F = Mi + Nj + Pk be a vector field whose components are continuous
throughout an open connected region D in space. Then F is conservative if and
only if F is a gradient field Vf for a differentiable function f.

EXAMPLE 2 Find the work done by the conservative field
= yzi + xzj + vk = Vf, where f(x,y 2) = xvz,

in moving an object along any smooth curve C joining the point A(—1, 3, 9) to B(1, 6, —4).

I
/CF*-{II‘ =/ Virdr = f(B) — f(A) = xyz|(6_4 — v2c139 = 3
A

https://manara.edu.sy/
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. . EIJ . 'I
and Potential Functions it
Line Integrals in Conservative Fields

THEOREM 3—Loop Property of Conservative Fields
The following statements are equivalent.

1. 35‘.: F:dr = 0 around every loop (that is, closed curve C) in D.

2. The field F is conservative on D.

Component Test for Conservative Fields

Let F = M(x,y,z2i + N(x,y,z)j + P(x,y, 2k be a field on an open simply
connected domain whose component functions have continnous first partial

derivatives. Then, F is conservative if and only if

dy a7’ oz x’ ax Ay’
Finding Potentials for Conservative Fields
- df . of df : .
Vf=F —) E]+H—FJ+H—ER—M1+NJ+PR )

https://manara.edu.sy/
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Path Independence, Conservative Fields, and Potential Functions
Line Integrals in Conservative Fields

EXAMPLE 3 Show that F = (e*cosy + yz)i + (xz — e*siny)j + (xy + )k is
conservative over its natural domain and find a potential function for it.

M = e¢‘cosy + yz, N=xz—¢esmny, P=xy+:

of _ __dN oM _ _dP N _ e _ M F is conservative
&_v = 2 =¥ =30 F e:“smy-!—z—ay. —>
of _ of _ of _
Pl cosy + vz, —rz e sin y, aﬁ—,x}+z
1 I \ N | |
flx, v, z) = e'cos y + xyz + g(y, 2). —e'siny + xz + Gy = %% et sin y. ) dg /oy =0
af
Z-wTE dh z
mm)  f(x, v, z) = ecosy + xvz + h(z). ) xy + =4 i + z, mm) f(z) =5 FC

.}

flx,v,z) = e'cosy + xyz + E + C

https://manara.edu.sy/ 2L
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Path Independence, Conservative Fields, and Potential Functions
Line Integrals in Conservative Fields

v
EXAMPLE 5 Show that the vector field F=——i+—

B i U e _1.:1
satisfies the equations in the Component Test, but is not conservative over its natural
domain. Explain why this 1s possible.

M= —_]:‘,f{_rj + yl],N = x‘.f{xl + f}, and P = (.

X

j + Ok

dy az” dx dz ’ dy  (x2 + 22 dx
But
— . . 0 == 7 __ Ty . X . —Ssin ¢ . cos ¢ T .
r(f) = (cos i + (sinf)), 0 = ¢ = 27. F 215 i+ 5 JPEJ et o war—. (—sin Hi + (cos 1j.

2.

2o

jﬁF*u‘r = fF-j—:dr =[ (sinlr + cc-slr:]dr
0

& Fa

Since the line integral of F around the loop C is not zero, the field F is not conservative

https://manara.edu.sy/ 2
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Path Independence, Conservative Fields, and Potential Functions

DEFINITIONS Any expression M(x, v, z) dx + N(x, v, z2) dy + P(x, v, 2) dz is
a differential form. A differential form is exact on a domain D in space if
df of f

d
Mde + Ndy + Pdz = de + Eﬂt}-‘ + Eﬂrz, = df

.

for some scalar function f throughout D.

Component Test for Exactness of Mdx + Ndy + Pd:

The differential form M dx + N dy + P dz 1s exact on an open simply connected
domain if and only if

dP _ ON aM _ aP

df _ dv dM _ daf oV _ oM
ﬂy—aa* dz ~ ax’

ax  dy”

This is equivalent to saying that the field F = Mi + Nj + Pk is conservative.

https://manara.edu.sy/
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Path Independence, Conservative Fields, and Potential Functions
Exact Differential Forms

EXAMPLE 6

(23.-1)
Show that y dx + x dy + 4 dz is exact and evaluate the integral f ydx + xdy + 4dz
over any path from (1, 1, 1) to (2, 3, —1). (111}

M=y N=x.P=4

= ) %iT=D=f;—-"' iEi'_iElij:[]:';jl_I ﬂ£= l_—a_ilj ) vdr + xdy + 4 dz 1s exact.
i . — df df df
vidx + xdyv + 4dz = df ) = = - =y — =
) f ¥, pelals e 4. —)

flx,v,z) = xv + 4z + C.

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, —1).

f2,3,-D— f(LLLY)=2+C—(5 +C) =—3.

https://manara.edu.sy/ 2
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Exercises
@ Which fields are conservative, and which are not?
F = yzi + xzj + vk F=vyvi+(x+2z)j—vk
@® find a potential function f for the field F. F = (ysin )i + (xsinz)j + (xycos 7)k xysin z +C

@ show that the differential forms in the integrals are exact. Then evaluate the integrals.

(2,5, =6)
f 2xdx + 2y dy + 2zdz [y 2)=x"+y* +2°+C
(0,0,

49

https://manara.edu.sy/
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Green’s Theorem in the Plane PAV

_ _ deol o
Spin Around an Axis: The k-Component of Curl &gl

DEFINITION The circulation density of a vector field F = Mi + Nj at the
point (x, y) is the scalar expression

aN _ aM
Freil s (1)

This expression is also called the k-component of the curl, denoted by
(curl F) = k.

Wertical axis

N>

Vertical axis

Curl F {J_i'ﬂ1 }'n} =k {- 0 Curl F I:.l'ﬂ, }'n} k=10
Clockwise circulation Counterclockwise circulation

https://manara.edu.sy/
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Green’s Theorem in the Plane deola
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Divergence

DEFINITION The divergence (flux density) of a vector field F = Mi + Nj at
the point (x, ¥) 15
aM | aN

divFk = E+ E (2)

EXAMPLE 2 Find the divergence, and interpret what it means, for each vector field
in Example 1 representing the velocity of a gas flowing in the xy-plane.

(a) Uniform expansion or compression: ¥F(x, y) = cxi + cyj ¢ a constant
(b) Uniform rotation: F(x,y) = —cyi + cxj

(¢) Shearing flow: F(x, y) = yi

Y . L X

(d) Whirlpool effect: F(x,y) = ml IETJ’Z

J

Source: div F (xy, vq) = 0

A gas expanding
at the point (x5. yg)

N\

/

/|

L
*

\

¥

Sink: div F (x5 v5) < 0

A gas compressing

at the point

N\

o

{xp. ¥o)

/.

/

-
i

N\

https://manara.edu.sy/
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Green’s Theorem in the Plane m
Divergence
Source: div F (xy, vq) = 0
A gas expanding
atthe pomtiixy, )

(a) divF = % (cx) + %{c}r} = 2¢: If ¢ = 0, the gas is undergoing uniform expansion;

if ¢ << 0, it is undergoing uniform compression. \ /

/N

¥

L
*

(b) divF = ;—x (—cy) + %{m} = (: The gas is neither expanding nor compressing.
Sink: div F (x5 v5) < 0

(c) divF = 9 (¥) = 0: The gas is neither expanding nor compressing. A gas compressing
dx at the point {xg. vg)

N

- df —¥ d x 2xy 2xy ) > =
d) divlk = — + — = — = (: Aeain, the :
@ ax (-1"' + J-'l) dy (12 + }-‘1) (2 + 7 (2 + ) . / \
divergence is zero at all points in the domain of the velocity field. O

https://manara.edu.sy/ 2
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Green’s Theorem in the Plane
Two Forms for Green’s Theorem

THEOREM 4—Green’s Theorem (Circulation-Curl or Tangential Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the
plane. Let F = Mi + Nj be a vector field with M and N having continuous first
partial derivatives in an open region containing R. Then the counterclockwise
circulation of F around C equals the double integral of (curl F) - k over R.

j{F Tds = \%de-kﬂdv—_[/(———)i ey (3)

Cnunt-n:n[m kwise circulation Curl integral

https://manara.edu.sy/
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Green’s Theorem in the Plane
Two Forms for Green’s Theorem

THEOREM 5—Green’s Theorem (Flux-Divergence or Normal Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the
plane. Let F = Mi + Nj be a vector field with M and N having continuous first
partial derivatives in an open region containing R. Then the outward flux of F
across C equals the double integral of div F over the region R enclosed by C.

\?g ‘neds = -l){M.ifv—Ndx— ﬂ(—-ﬁ-—)ird; (4)

Dum ard flux Divergence integral

https://manara.edu.sy/

30



[

2 - 6)lioJl
Green’'s Theorem in the Plane

Two Forms for Green’s Theorem

EXAMPLE 3 Verify both forms of Green’s Theorem for the vector field Fix,v) = (x — y)i + xj
and the region K bounded by the unit circle & r{f) = (cos i + (sinnj. 0 =t = 2.

M=x—y=cost — sint, dy = d(cos 1) = —sin t dt,

N=x=cost, dy = d(sin t) = cos t dt.

=27
551:"'1" ds = ng dx + Ndy =/ (cos t — sin H)(—sin f) dt + (cos N(cos N dt = 2=
a & t=0

oM _ M _
ox i dy

-

dN oM
[/ (E — E) dr dy = ﬂ (1 — (=1 dedy =2 [/ el ey = 2{area inside the unit circle) = 2w
R ] R iy

aN _

= oN _
ox

-1, L =0

https://manara.edu.sy/ =L
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Two Forms for Green’s Theorem

=2

fﬂff dy — Ndx = f (cos t — sin H{cos tdf) — (cos H(—sin fdf) = [ cositdt = a1
=0

/]( )dxrf} f (1 + Mdxdy = [/ircfy = T.
Iy

EXAMPLE 4 Evaluate the line integral f aydy — v dx,
C
where C is the square cut from the first quadrant by the lines x = 1 and y = 1

1. With the Tangential Form Equation (3): Taking M = —y* and N = xy gives the result:

| 1
%—} dy + xvdy = [/ (— — —) dx dy = f/[}r — (—2¥)) dx dy =/[ 3y dx dy
040

2. With the Normal Form Equation (4): Taking M = xy, N = y?, gives the same result:

f.l"lr’i{} — yldx = [/(— + —) dx dy = f (v + 2¥) dxdy =
B

o] LV

https://manara.edu.sy/
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Green’'s Theorem in the Plane

Two Forms for Green’s Theorem

EXAMPLE 5 Calculate the outward flux of the vector field F(x, y) = 2&%i + 7]
across the square bounded by thelines x = Tland y = T 1.

Flu:-;—fF ndx—fMd}—Ndx [/(——F—) x dy
=// (2ye™ + 31]:2] dxdy = 4
—14 =]

https://manara.edu.sy/

33



Y

: 0)liaJl
Exercises

@ use Green’s Theorem to find the counterclock-wise circulation and outward flux for the field F and curve C.

F=(x-=wvi+(yv—x)j C: The square bounded by x = 0, x = L,y =0y =1 5

@ find the work done by F in moving a particle once counterclockwise around the given curve.

F = 2xi + 4x%y?j] C: The boundary of the “triangular” region in the first quadrant

enclosed by the x-axis, the line x = 1, and the curve y = »° 33

@ Apply Green's Theorem to evaluate the integral % (v2 dx + 22 dy)

C: The triangle bounded by x = 0, x + v =L y=0

https://manara.edu.sy/
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