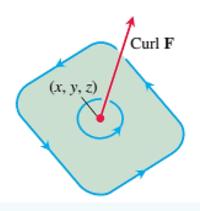


MATHEMATICAL ANALAYSIS 2

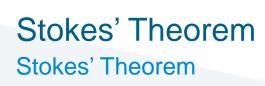
Prepared by Dr. Sami INJROU

Stokes' Theorem The Curl Vector Field

 $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ $\operatorname{curl} \mathbf{F} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right)\mathbf{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right)\mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mathbf{k}$ $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$ Find the curl of $\mathbf{F} = (x^2 - z)\mathbf{i} + xe^z\mathbf{j} + xy\mathbf{k}$. EXAMPLE 1 $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - z & xe^z & xy \end{vmatrix} = x(1 - e^z)\mathbf{i} - (y + 1)\mathbf{j} + e^z\mathbf{k}.$



(3)

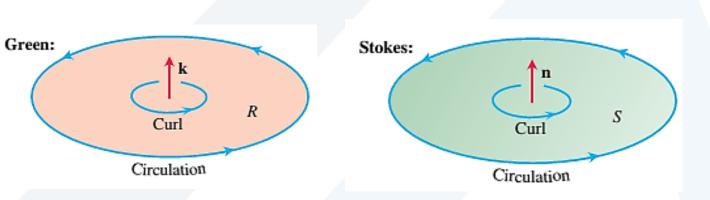


THEOREM 6-Stokes' Theorem

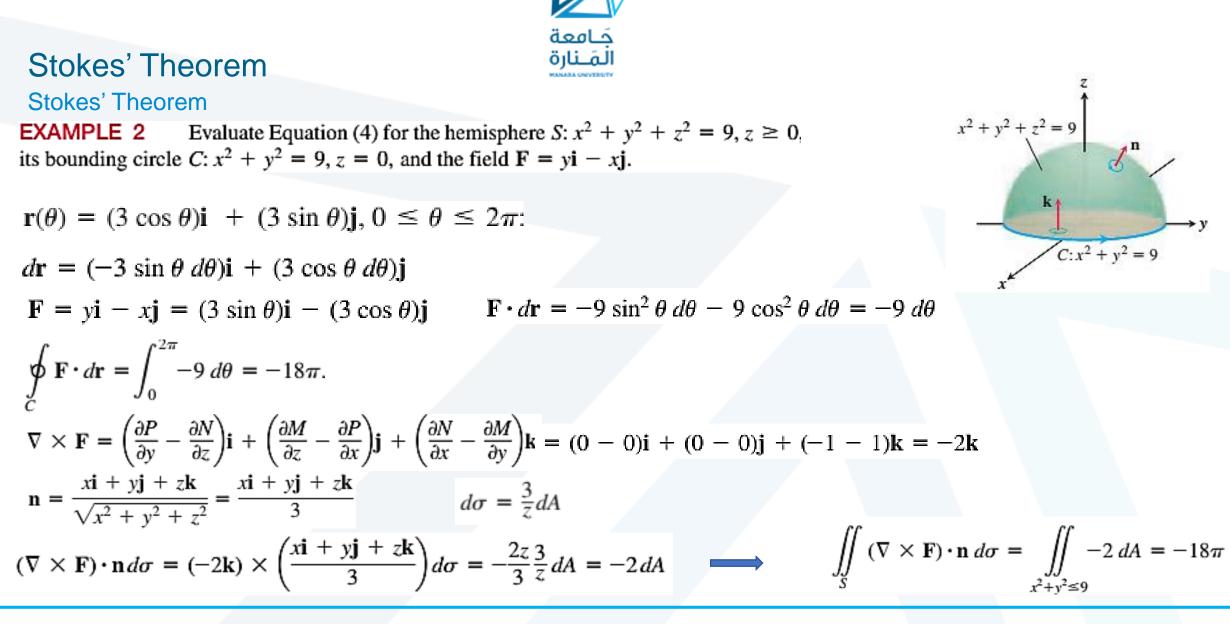
Let *S* be a piecewise smooth oriented surface having a piecewise smooth boundary curve *C*. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ be a vector field whose components have continuous first partial derivatives on an open region containing *S*. Then the circulation of **F** around *C* in the direction counterclockwise with respect to the surface's unit normal vector **n** equals the integral of the curl vector field $\nabla \times \mathbf{F}$ over *S*:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$$

Counterclockwise circulation Curl integral



(4)



Stokes' Theorem

EXAMPLE 4 Find the circulation of the field $\mathbf{F} = (x^2 - y)\mathbf{i} + 4z\mathbf{j} + x^2\mathbf{k}$ around the curve *C* in which the plane z = 2 meets the cone $z = \sqrt{x^2 + y^2}$, counterclockwise as viewed from above (Figure 16.62).

$$\mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + r\mathbf{k}, \qquad 0 \le r \le 2, \quad 0 \le \theta \le 2\pi.$$

$$\mathbf{n} = \frac{\mathbf{r}_r \times \mathbf{r}_\theta}{|\mathbf{r}_r \times \mathbf{r}_\theta|} = \frac{-(r\cos\theta)\mathbf{i} - (r\sin\theta)\mathbf{j} + r\mathbf{k}}{r\sqrt{2}} = \frac{1}{\sqrt{2}} \left(-(\cos\theta)\mathbf{i} - (\sin\theta)\mathbf{j} + \mathbf{k}\right)$$

$$d\sigma = r\sqrt{2} \, dr \, d\theta \qquad \nabla \times \mathbf{F} = -4\mathbf{i} - 2x\mathbf{j} + \mathbf{k} = -4\mathbf{i} - 2r\cos\theta\mathbf{j} + \mathbf{k}.$$
$$(\nabla \times \mathbf{F}) \cdot \mathbf{n} = \frac{1}{\sqrt{2}} \left(4\cos\theta + 2r\cos\theta\sin\theta + 1\right) = \frac{1}{\sqrt{2}} \left(4\cos\theta + r\sin2\theta + 1\right)$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma = \int_0^{2\pi} \int_0^2 \frac{1}{\sqrt{2}} (4\cos\theta + r\sin 2\theta + 1) (r\sqrt{2} \, dr d\theta) = 4\pi$$

$$C: x^2 + y^2 = 4, z = 2$$

$$S: \mathbf{r}(r, \theta) = (r \cos \theta)\mathbf{i} + (r \sin \theta)\mathbf{j} + r\mathbf{k}$$

Stokes' Theorem

EXAMPLE 7 Calculate the circulation of the vector field

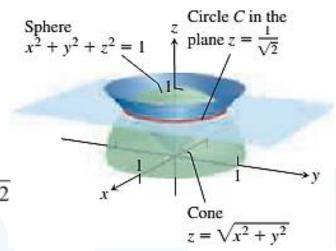
$$\mathbf{F} = (x^2 + z)\mathbf{i} + (y^2 + 2x)\mathbf{j} + (z^2 - y)\mathbf{k}$$

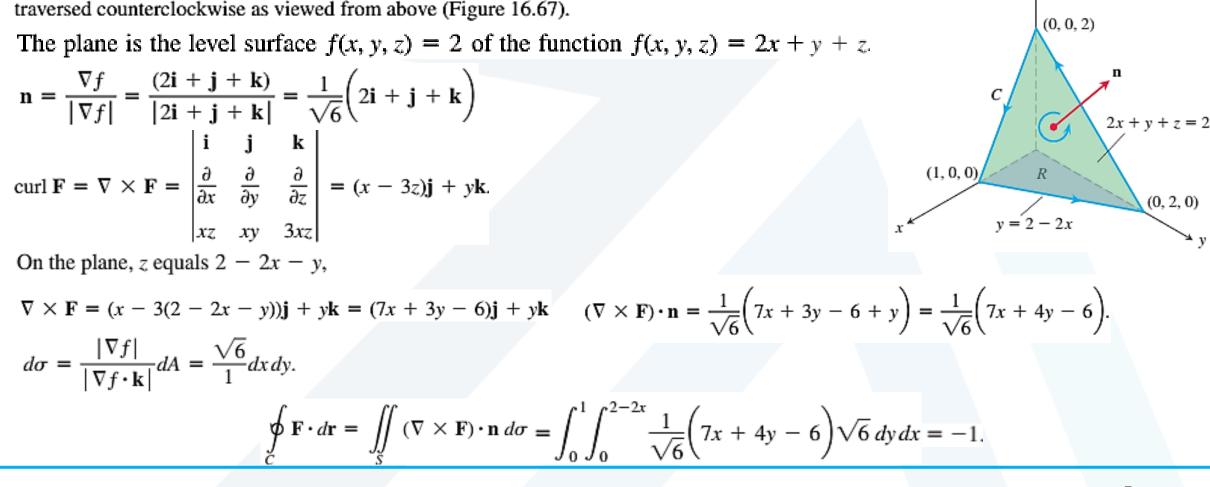
along the curve of intersection of the sphere $x^2 + y^2 + z^2 = 1$ with the cone $z = \sqrt{x^2 + y^2}$ traversed in the counterclockwise direction around the *z*-axis when viewed from above.

The sphere and cone intersect when $1 = (x^2 + y^2) + z^2 = z^2 + z^2 = 2z^2$, $z = 1/\sqrt{2}$ $\mathbf{n} = \mathbf{k}$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + z & y^2 + 2x & z^2 - y \end{vmatrix} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k} \qquad (\nabla \times \mathbf{F}) \cdot \mathbf{k} = 2.$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, d\sigma = \iint_S 2 \, d\sigma = 2 \cdot \text{area of disk} = 2 \cdot \pi \left(\frac{1}{\sqrt{2}}\right)^2 = \pi$$





حامعة

المَـنارة

Stokes' Theorem

EXAMPLE 9 Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F} = xz\mathbf{i} + xy\mathbf{j} + 3xz\mathbf{k}$ and *C* is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, traversed counterclockwise as viewed from above (Figure 16.67).

Exercises

• use the surface integral in Stokes' Theorem to calculate the circulation of the field **F** around the curve C

 $\mathbf{F} = x^{2}\mathbf{i} + 2x\mathbf{j} + z^{2}\mathbf{k}$ C: The ellipse $4x^{2} + y^{2} = 4$ in the xy-plane, counterclockwise when viewed from above • Let **n** be the outer unit normal (normal away from the origin) of the parabolic shell S: $4x^{2} + y + z^{2} = 4$, $y \ge 0$, and let $\mathbf{F} = \left(-z + \frac{1}{2+x}\right)\mathbf{i} + (\tan^{-1}y)\mathbf{j} + \left(x + \frac{1}{4+z}\right)\mathbf{k}$ Find the value of $\iint (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$ -4π

• Let S be the cylinder $x^2 + y^2 = a^2$, $0 \le z \le h$, together with its top, $x^2 + y^2 \le a^2$, z = h. Let $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + x^2\mathbf{k}$. Use Stokes Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through S.

use the surface integral in Stokes' Theorem to calculate the flux of the curl of the field F across the surface S in the direction of the outward unit normal n.

$$\mathbf{F} = 2z\mathbf{i} + 3x\mathbf{j} + 5y\mathbf{k} \qquad S: \quad \mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (4-r^2)\mathbf{k}, \qquad 0 \le r \le 2, \qquad 0 \le \theta \le 2\pi$$

 $2\pi a^2$

 4π

Divergence in Three Dimensions

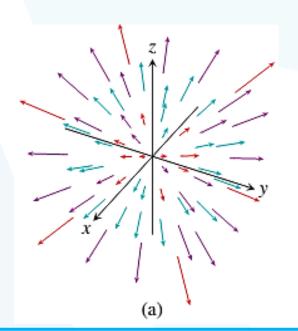
 $\mathbf{F} = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$ div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}.$

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in space. Find the divergence of each vector field and interpret its physical meaning. Figure 16.72 displays the vector fields.

- (a) Expansion: $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
- (b) Compression: $\mathbf{F}(x, y, z) = -x\mathbf{i} y\mathbf{j} z\mathbf{k}$
- (c) Rotation about the *z*-axis: $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j}$
- (d) Shearing along parallel horizontal planes: $\mathbf{F}(x, y, z) = z\mathbf{j}$

(a) div
$$\mathbf{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 3$$
: The gas is undergoing constant uniform

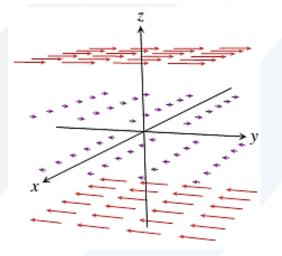
expansion at all points.

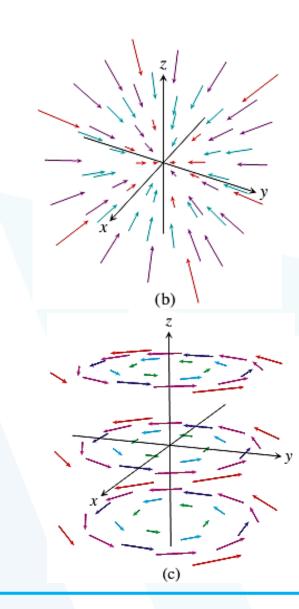


Divergence in Three Dimensions

(b) div $\mathbf{F} = \frac{\partial}{\partial x} (-x) + \frac{\partial}{\partial y} (-y) + \frac{\partial}{\partial z} (-z) = -3$: The gas is undergoing constant uniform compression at all points.

- (c) div $\mathbf{F} = \frac{\partial}{\partial x} (-y) + \frac{\partial}{\partial y} (x) = 0$: The gas is neither expanding nor compressing at any point.
- (d) div $\mathbf{F} = \frac{\partial}{\partial y}(z) = 0$: Again, the divergence is zero at all points in the domain of the velocity field, so the gas is neither expanding nor compressing at any point.





https://manara.edu.sy/

THEOREM 8—Divergence Theorem

Let **F** be a vector field whose components have continuous first partial derivatives, and let *S* be a piecewise smooth oriented closed surface. The flux of **F** across *S* in the direction of the surface's outward unit normal field **n** equals the triple integral of the divergence $\nabla \cdot \mathbf{F}$ over the region *D* enclosed by the surface:

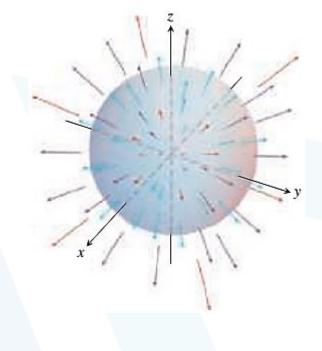
$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \, dV. \tag{2}$$

Outward Divergence flux integral

EXAMPLE 2 Evaluate both sides of Equation (2) for the expanding vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$ (Figure 16.73). $f(x, y, z) = x^2 + y^2 + z^2 - a^2$, $\mathbf{n} = \frac{2(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})}{\sqrt{4(x^2 + y^2 + z^2)}} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a}$. $\mathbf{F} \cdot \mathbf{n} \, d\sigma = \frac{x^2 + y^2 + z^2}{a} \, d\sigma = \frac{a^2}{a} \, d\sigma = a \, d\sigma$.

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iint_{S} a \, d\sigma = a \iint_{S} d\sigma = a(4\pi a^{2}) = 4\pi a^{3}.$$

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 3,$$
$$\iiint_{D} \nabla \cdot \mathbf{F} \, dV = \iiint_{D} 3 \, dV = 3\left(\frac{4}{3}\pi a^{3}\right) = 4\pi a^{3}.$$



COROLLARY The outward flux across a piecewise smooth oriented closed surface S is zero for any vector field \mathbf{F} having zero divergence at every point of the region enclosed by the surface.

EXAMPLE 3 Find the flux of $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes x = 1, y = 1, and z = 1.

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (xy) + \frac{\partial}{\partial y} (yz) + \frac{\partial}{\partial z} (xz) = y + z + x$$

Flux =
$$\iint_{\substack{\text{Cube}\\\text{surface}}} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{\substack{\text{Cube}\\\text{interior}}} \nabla \cdot \mathbf{F} \, dV = \int_0^1 \int_0^1 \int_0^1 (x + y + z) \, dx \, dy \, dz = \frac{3}{2}.$$

The Divergence Theorem EXAMPLE 4

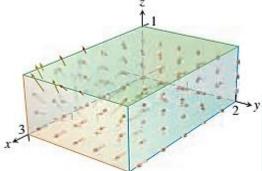
- (a) Calculate the flux of the vector field F = x²i + 4xyzj + ze^xk out of the box-shaped region D: 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1. (See Figure 16.74.)
- (b) Integrate div F over this region and show that the result is the same value as in part (a), as asserted by the Divergence Theorem.

Consider the top side in the plane z = 1,

outward normal $\mathbf{n} = \mathbf{k}$.

The flux across this side $\mathbf{F} \cdot \mathbf{n} = ze^{x}$.

$$\int_0^2 \int_0^3 e^x dx \, dy = 2e^3 - 2.$$



Side	Unit normal n	F∙n	Flux across side
x = 0	—i	$-x^2 = 0$	0
x = 3	i	$x^2 = 9$	18
y = 0	—j	-4xyz = 0	0
<i>y</i> = 2	j	4xyz = 8xz	18
z = 0	$-\mathbf{k}$	$-ze^x = 0$	0
z = 1	k	$ze^x = e^x$	$2e^3 - 2$

 $18 + 18 + 2e^3 - 2 = 34 + 2e^3.$

(b) div $\mathbf{F} = \nabla \cdot \mathbf{F} = 2x + 4xz + e^x$.

$$\iiint \text{div } \mathbf{F} \, dV = \int_0^1 \int_0^2 \int_0^3 (2x + 4xz + e^x) \, dx \, dy \, dz = 34 + 2e^3.$$

Divergence and the Curl

THEOREM 9 If $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field with continuous second partial derivatives, then

div (curl **F**) =
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$
.

EXAMPLE 5 Find the net outward flux of the field $\mathbf{F} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\rho^3}$, $\rho = \sqrt{x^2 + y^2 + z^2}$ across the boundary of the region $D: 0 < b^2 \le x^2 + y^2 + z^2 \le a^2$ (Figure 16.81).

$$\frac{\partial \rho}{\partial x} = \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2x) = \frac{x}{\rho} \qquad \qquad \frac{\partial M}{\partial x} = \frac{\partial}{\partial x} (x\rho^{-3}) = \rho^{-3} - 3x\rho^{-4} \frac{\partial \rho}{\partial x} = \frac{1}{\rho^3} - \frac{3x^2}{\rho^5}.$$
$$\frac{\partial N}{\partial y} = \frac{1}{\rho^3} - \frac{3y^2}{\rho^5} \qquad \text{and} \qquad \qquad \frac{\partial P}{\partial z} = \frac{1}{\rho^3} - \frac{3z^2}{\rho^5}.$$

$$\operatorname{div} \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z} = \frac{3}{\rho^3} - \frac{3}{\rho^5}(x^2 + y^2 + z^2) = \frac{3}{\rho^3} - \frac{3\rho^2}{\rho^5} = 0.$$

So the net outward flux of F across the boundary of D is zero by the corollary to the Divergence Theorem

Divergence and the Curl

To find it, we evaluate the flux integral directly for an arbitrary sphere S_a . The outward unit normal on the sphere of radius *a* is

$$\mathbf{n} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a}$$
$$\mathbf{F} \cdot \mathbf{n} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a^3} \cdot \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{a} = \frac{x^2 + y^2 + z^2}{a^4} = \frac{a^2}{a^4} = \frac{1}{a^2}$$
$$\iint_{S_a} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \frac{1}{a^2} \iint_{S_a} d\sigma = \frac{1}{a^2} (4\pi a^2) = 4\pi.$$

The outward flux of **F** in Equation (8) across any sphere centered at the origin is 4π . This result does not contradict the Divergence Theorem because **F** is not continuous at the origin.

Exercises

 \bigcirc use the Divergence Theorem to find the outward flux of **F** across the boundary of the region D.

$$\mathbf{F} = x^{2}\mathbf{i} + y^{2}\mathbf{j} + z^{2}\mathbf{k}$$
a. Cube *D*: The cube cut from the first octant by the planes $x = 1, y = 1, \text{ and } z = 1$
c. Cylindrical can
D: The region cut from the solid cylinder
$$x^{2} + y^{2} \le 4 \text{ by the planes } z = 0 \text{ and } z = 1$$

$$\mathbf{F} = (5x^{3} + 12xy^{2})\mathbf{i} + (y^{3} + e^{y}\sin z)\mathbf{j} + (5z^{3} + e^{y}\cos z)\mathbf{k}$$
D: The solid region between the spheres $x^{2} + y^{2} + z^{2} = 1$ and $x^{2} + y^{2} + z^{2} = 2$

$$\mathbf{F} = \ln(x^{2} + y^{2})\mathbf{i} - \left(\frac{2z}{x}\tan^{-1}\frac{y}{x}\right)\mathbf{j} + z\sqrt{x^{2} + y^{2}}\mathbf{k}$$
D: The thick-walled cylinder $1 \le x^{2} + y^{2} \le 2, -1 \le z \le 2$

$$2\pi(-\frac{3}{2}\ln 2 + 2\sqrt{2} - 1)$$