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Laplace Transform

The Laplace transform of a continuous-time signal x (¢) is defined as

X (8) = ﬁ:I{t] e =t dt

where s, the independent variable of the transform, is a complex variable.

where s= o+ jo, the independent variable of the transform.

o . damping factor, o: frequency variable.

Unilateral (or one-sided): X(s) = :X(t)e‘Sfa’t;

Bilateral (or two sided):  X(s) = : x(Hedr;
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Figure 7.19 — Shape of the region of convergence.
causal signal anticausal signal noncausal signal
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1. Using the Laplace transform definition determine the transform of each signal
listed below. For each transform construct a pole-zero diagram and specify
the ROC.

a. () = e2tu(d)
b. X8 = e?tu(t- 1)

c. (1) = étu(—?)

1, 0O0<t<l1
e. x(t)=4-1, t>1

0, <0
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a. X(s) = I e lu()eat = j' e leg~Slgt = __ ; g
e 0 —(5+2)O S+2 =
Re{s}>—2
bX(S) — Jooe—Ztu(t _ 1)e—st dt = fooe—Zte—st dt = e—(S+2)t 4 e e S | Jw
— o0 1 —(s+2) . st 2 ;
—x .

Re{s}>-2
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e. X(5) = j: Wear+ [ (- e ar = ‘9__; | e _ %[1 P
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Refs}<0  Re{s)>0
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2. Construct a pole-zero diagram and specify the ROC for each of the transforms
given below. Also, determine the Fourier transform Xo) if it exists.

8. X(5) = 5% x(t)is causal
55 +35+2
0. X(5) = — T x(1) Is causal
c. X(8) == s+l ,  x(¥) Is anti-causal
— 4543
s -5
d. X(8) = = ,  Xx() Is anti-causal
5 —-5-6
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a. The transform has a zero at s = 2 and poles at s = -1,-2. Since x¢) is
causal, the ROC is Re {s} > —1. The Fourier transform Xo) is

»— 2 ®— 2
X(@) = X(),_;, = —2L2= - JO=°
(Jo) + f3o+2 (2-0)+ /3w
Re {;; >—1
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b. The transform has a zero at s=0 and poles at s=11,-2. 7
Since x(#) is causal, the ROC is Re {s} > 1. The ROC i
does not include the jm-axis of the s-plane. Therefore :
the Fourier transform does not exist. X9 1>!< g

a

Re {H ]r >1

c. The transform has a zero at s= -1 and poles at s= 1, 3. Since x¢) is anti-
causal, the ROC is Re {s} < 1. The Fourier transform X o) is

j@-|—1 j(0+1
X(w) = X(5)|._. = =
((D) ( )|5=j0) (/(0)2 _j40)+ 3 (3 . 0)2) _j40)
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i Re {:} <1
7N % *~7 d. The transform has a zero at s= 0, 1 and poles
; at s=-2, 3. Since A {) is anti-causal, the ROC
i IS Re {s} < —-2. The ROC does not include the
—_—— jo-axis of the s-plane. Therefore the Fourier
Re {s} <2 transform does not exist.
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Properties of Laplace Transform

Property x(0 X(s) ROC
Linearity ax,(t) + bx,(?) ax,(s) + bX,(s) D (R, NR,)
Delay by 7 x(t—T7) X(s)e =T R
Multiply by ¢ tx(9) —dX(s)lds R
Multiply by eat x(t)eat X(s+ a) Shift R by —«
Scaling in ¢ x(a?) |a| ( ) aR
Differentiate in ¢ ax( )l dt 5)((5) DR
Integrate in ¢ jij(r)dr @ D (RN (Re(s) > 0))
Convolve in ¢ X, * X( 1) X,(8) X,(s) D (R,NR,)
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3. Using the property of the Laplace transform, determine Xs) for each of the
signals listed below. Also indicate the ROC in each case.

a. (1) =68(1) +2e* u)
b. x(8) = (1 - &) 1)

c. x(9) = e?tcos (39 u(d
d. (8 = e2(t-1 ¢yt - 1)
e. () =e?ut-1)
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a. x(8) =3(f) + 2e* (1) ool
a.L{f(t)} =1, alls L{e tu(t)} = 1 Re{s} > —1 L{u(t)} =%
C : 2 _§5+3
Using linearity X(s) =1+ T Re{s} > -1
b. () =(1- era)- u(d) .
b L{u(f)}=<, Re{s}>0 L{e"u(t)} = 7 Re{st>-1
Using linearity X(s) = & L Re{s} >0

S s+1:d5+D’
c. x(#) = et cos (31 u(d)

1 : 1 .
c.x(t) = Eet(_“ﬁ)u(t) + Eet(_z‘ﬁ)u(t)

L{etC=Pu(t)} =

| Re{s) > —2
st2-j3 rRels
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L{e tCH3)y(t)} = , Re{s}> -2
{e u(t)} ST2+/3 e{s}
Usina li it 1 1/2 +2
Sing lineari _ 2 ___ 5 _
g y XS =t 243 s2rast 13 Relst> 2

d. x#) = e2t- 1 ot - 1)

d. 1{e2u(h)} = 5%2 Re{s}> —2

—5)

Using time shifting property X(s) = £{e 2 Dyt - 1)} = Si 5. Re{s}>-2
e. ) =e?tu(t-1) 57
e.L{e ?'u(t — 1)} = e ?L{e 2Dyt — 1)} = — A Re{s} > —2

Using scaling property
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4. Using the linearity and time shifting properties, determine the Laplace
transform of the signal shown. Specify the ROC in each case.

x(t) = u(t) -1.5u(t -1) + u(t —2) — 0.5u(t — 3)

X(8) = %(1 ~15e° +e% -0.56%), Re{s}> -
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5. Find a transfer function for each CTLTI system described below by means of

a differential equation.

_&: s-1
2. H(s) = X(S) &% +45+3

AUE) 4a’y(z‘) ; y(t)_a’x(z‘) XD

a.
dar 2
_Y(s) s +5+3
L CROLL CRRC URERY R CRERY

16/46
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6. Find a differential equation for each CTLTI system described below by
means of a transfer function.

a. H(s) = = a. L0 s 4y - 200
s+1 2
BHO = 5o b d;;f) 5P gy = U
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7. For the RLC circuit shown,
R=20 L=1H
—N\NNVN (000 — N
z (1) C) ’ i (t) ::a = é F y(t)

a. Find a differential equation between the input x(¢) and the output K 7).
b. Obtain the transfer function As) from the DE found in part (a).
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di(t) .
a. x(t)=y( + LT + Ri(t)
d di d? d? d
i(t) = C% = ;(tt) =C dﬁgt) » LC d};gt) + RC% + y(t) = x(t)
d’y(t) Rdy(t) 1 1
a2 1 7ar Tre?® =@
UL ., aNe) _
7 + 27 + 8)(f) = 8x(1)
Y(s) 8

b (" + 25 +8) Y(5) = 8X(8) = H(8) = 35 = 755
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8. For the RLC circuit shown, the initial values are relaxed

R=5Q,L=1HandC=1/6F.

(t)

— J

) |

a. Find a differential equation between the input x(#) and the output ) 7).
b. Obtain the transfer function As) from the DE found in part (a).
c. Obtain the impulse response h(t) by using Inverse Laplace Transform
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di(t)
a. x(t)=y( + LT + Ri(t)
d di d? d? d
i(t) = C% = ;(tt) =C d);gt) » LC d};gt) + RC% + y(t) = x(t)
d’y(t) Rdy(t) 1 1
a2 1 7ar Tre?® =@
d? d
dyt 2” 4 5% +6y(t) = 6x(t)

Y(s) 6

b. (52 +55+6)Y(s) = 6X(s) = H(s) =

X(S)=52+55+6
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Y(s) 6 6
C. _ _ _
H(s) ~X(s) s245s5+6 (s+2)(s+3)
The polesare:s =—-3; s= —2;: ROC: RE{s}> —2 The Poles Are Real and Distinct
H(s) = A + 5 A= (s+2)H(s) > A

YT F 2 5+3 -\ S)s=—2 _S+3h}2_

6
B = 3)H - B=——>,I|._ »~=—6
(S'l' ) (S)ls— 3 >> S_I_le— 3
The impulse response
The transfer function ‘ H(s) = 6 6 2 ‘ h(t) = 6e 2tu(t) — 6e3tu(t)

S+2_S+
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d. Find the output if the inputis x(t) = u(t)
6 1 A B C
Y(s) == —= + +—
x(t) = u(t) s“+5s+6 s s+2 s+3 s
1 = = —— = —
X(s) = . A=(s+2)Y(s)|s=—y > A sG 1 3) ls=—> 3
Y (s) 6 B=(+3)Y(S)|sz—3 >B=—"—<|g=_3 =2
jr— — 2
H(s) X(s) s?+5s+6 s(s +2)
— _ 1 C =5sY(s)|szg > C = _a==
V(s) = H().X(s) = . |s=0 G130+ =05
The Poles Are Real and Distinct Y(s) = —3 n 2 n 6/5
The polesare:s=—-3; s = —2; s =0; st2 s+3 S ¢
ROC : RE{s}>0 y(t) = —3e 2tu(t) + 2e3tu(t) + gu(t)
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e. Find the impulse response
x(t) = 6(t)
y(t) = Trans (u(t) — d):l—(tt) = Trans <dl;it)> = Trans(5(t)) = h(t)
_ 2,2t —3t 6
. dy(®) d( 3e “tu(t) + 2etu(t) + 5u(t)>
(&) = dt dt

h(t) = (;e_Zt — ge_“) u(t)

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 24/46


https://manara.edu.sy/

[

&jliall

LILEE PSS et

Extra examples
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Inverse Laplace transform

9. For a causal signal x(t) the Laplace transform is : X(s) =

2

: : s+ 3s+ 2

Find the inverse Laplace transform

The polesare:s=—1;s= —2;: ROC: RE{s}> -1 The Poles Are

Real and Distinct
X(s) = A + 5 A= (s+2)X(s) > A = =—1
YT i 2 s+ 1 y (& S)s=—2 _S+1|S=_2_

B=(s+1X(s)|s=—1 »B = s+ 2 s=—1 =1

1 1
) X(s) = 12 + = m) x(t) = —e *u(t) + e tu(t)
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Inverse Laplace transform
. A s+ 1
10. For a causal signal x(t) the Laplace transform is : X (s) = G+2)
S|S
Find the inverse Laplace transform
The polesare: s=—2;s= 0;: ROC: RE{s}>0 THE POLES ARE
1 1 REAL AND
ki k2 b — o X (s _ S _ 1 DISTINCT
X(s) = S +S+2 o {h]*=“ s+2]_, 2
s+1 1
ko= (s+2) X (s = = -
2= (5+2) X (s) _ N
, 1/2  1/2 1 1 _
‘ X (s)= : +£+2 ‘ J‘tf}:E|-1e(tJ-|—§F 2t (t)
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Inverse Laplace transform X6 = T
The Laplace transtorm of a signal z () is
s+l k k k
X (8) = —5—= X _"M 2 3
s (s +9) (s) 3+3—|—j3+s—j3
with the ROC specified as
Re{s} >0
Determine = (). s+ 1 1
k=X () s=0  (s+33) (s—33)|,_, 9
Please note : : s+ 1 11
k‘ = + 3 X s = —— 4 7=
The poles are complex 2= (s473) X (o) s=—j3  S(s—73)|__js 576
1 1
ky = ki = —— — j=
PTRTTER G

x(t) =kyu(t) + koe B u(t) + ka3t u(t)

2w+ (g +i3) M u O+ (g g ) S ul

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 28/46


https://manara.edu.sy/

>y

Inverse Laplace transform
A | signal x(#) has the Lapl f X(s) = o+ 1)
causal signal x(¢) has the Laplace transform (511)°(s+2)
X(s) = ss+l) 3 3 2 . 3 & Multiple-order poles
(s+1)°(s+2) s+1 (s+1° (s+1)° s+2
1 al 1 1

L{eu()y=——, L{te'u(t))=- _

e v} s+1 t (0} a’sL‘+J (s +1)°

a 1 2
L{te " u(t)} = - =
1 (0} 0’5{(5+1)2} (s+1)°

x(1) = =3e'u(t) + 3te 'u(t) — e u(t) + e u(b)
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