حَـامعة
المَــنارة
sesesumotioft
*..........

Graphs

Outline

- Graph and Graph Models
- Graph Terminology and Special Types of Graphs
- Representing Graphsand Graph Isomorphism
- Connectivity اتِّا
- Euler and Hamiltonian Paths
- Shortest-Path Problems
- Planar Graphs
- Graph Coloring

Introduction to Graphs

Def 1. A graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ consists of \boldsymbol{V}, a nonempty set of vertices (or nodes), and \boldsymbol{E}, a set of edges. Each edge has either one or two vertices associated with it, catted its endpoints. An edge is said to connect its endroints.
eg.
ة) $G \in\left(\begin{array}{l}\text { (}\end{array} V, E\right)$, where

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}
$$

$E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right.$
$\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\}$
$\left.\left\{v_{4}, v_{7}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{6}, v_{7}\right\}\right\}$
V_{2}
V_{7}

Def A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph.

Def Multigraph: simple graph + multiple edges (multiedges)
(Between two points to allow multiple edges)
eg.

Def. Pseudograph:

simple graph + multiedge
eg.

Def 2. Directed graph (digraph): simple graph with each edge directed

Note: • is allowed in a directed graph
Note:

The two edges
(u,v),(u,v)
The two edges (u,v),
(v, u) are not multiedges.
are multiedges.
Def. Directed multigraph: digraph+multiedges

Table 1. Graph Terminology

Type	Edges	Multiple Edges	Loops
(simple) graph	undirected edge: $\{u, v\}$	\times	\times
Multigraph		\checkmark	\times
Pseudograph		\checkmark	\checkmark
Directed graph	directed	\times	\checkmark
Directed multigraph	edge: (u,v)	\checkmark	\checkmark

Graph Models

Example 1. (Niche Overlap graph)
We can use a simple graph to represent interaction of different species of animals. Each animal is represented by a vertex. An undirected edge connects two vertices if the two species represented by these vertices compete.

Example 2. (Acquaintanceship graphs)

We can use a simple graph to represent whether two people know each other. Each person is represented by a vertex. An undirected edge is used to connect two people when these people know each other.

FIGURE 6 An Acquaintanceship Graph.

Example 3. (Influence graphs)

In studies of group behavior it is observed that certain people can influence the thinking of others. Simple digraph \Rightarrow Each person of the group is represented by a vertex. There is a directed edge from vertex a to vertex b when the person a influences the person b.
eg

Example 9. (Precedence graphs and concurrent processing) Computer programs can be executed more rapidly by executing certain statements concurrently. It is important not to execute a statement that requires results of statements not yet executed.
Simple digraph \Rightarrow Each statement is represented by a vertex, and there is an edge from a to b if the statement of b cannot be executed before the statement of a.

Graph Terminology

Def 1. Two vertices \boldsymbol{u} and \boldsymbol{v} in a undirected graph \boldsymbol{G} are called adjacent (or neighbors) in \boldsymbol{G} if $\{\boldsymbol{u}, \boldsymbol{v}\}$ is an edge of \boldsymbol{G}.
Note : adjacent: a vertex connected to a vertex incident: a vertex connected to an edge

Def 2. The degree of a vertex \boldsymbol{v}, denoted by $\operatorname{deg}(\boldsymbol{v})$, in an undirected graph is the number of edges incident with it.
(Note : A loop adds 2 to the degree.)

Example 1. What are the degrees of the vertices in the graph \boldsymbol{H} ?

$$
\begin{aligned}
& \operatorname{deg}(a)=4 \\
& \operatorname{deg}(b)=6 \\
& \operatorname{deg}(c)=1 \\
& \operatorname{deg}(d)=5 \\
& \operatorname{deg}(e)=6 \\
& \operatorname{deg}(f)=0
\end{aligned}
$$

Def. A vertex of degree 0 is called isolated.
Def. A vertex is pendant if and only if it has degree one.

Thm 1. (The Handshaking Theorem)

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be an undirected graph with e edges (i.e., $|\boldsymbol{E}|=\boldsymbol{e}$). Then
$\sum_{v \in V} \operatorname{deg}(v)=2 e$
eg.

The graph H has 11 edges, and

$$
\sum_{v \in V} \operatorname{deg}(v)=22
$$

Example 3. How many edges are there in a graph with 10 vertices each of degree six?

Sol :
$10 \cdot 6=2 e \Rightarrow e=30$

Thm 2. An undirected graph $G=(V, E)$ has an even number of vertices of odd degree.
Pf : Let $V_{1}=\{v \in V / \operatorname{deg}(v)$ is even $\}$,

$$
V_{2}=\{v \in V / \operatorname{deg}(v) \text { is odd }\} .
$$

$$
2 e=\sum_{v \in V_{1}}^{v} \operatorname{deg}(v)+\sum_{v \in V_{2}} \operatorname{deg}(v) \Rightarrow \sum_{v \in V_{2}} \operatorname{deg}(v) \text { is even. }
$$

Def 3. $G=(V, E)$: directed graph, $e=(u, v) \in E: u$ is adjacent to v v is adjacent from u of a loop are u : initial vertex of e v : terminal (end) vertex of e

The initial vertex and terminal vertex the same

Def 4.

$G=(V, E):$ directed graph, $\quad v \in V$
$\operatorname{deg}^{-}(V)$: \# of edges with v as a terminal. (in-degree)
$\operatorname{deg}^{+}(v)$: \# of edges with v as a initial vertex (out-degree)

Example

4.

$$
\operatorname{deg}^{-}(a)=2, \operatorname{deg}^{+}(a)=4
$$

$$
\operatorname{deg}^{-}(b)=2, \operatorname{deg}^{+}(b)=1
$$

$$
\operatorname{deg}^{-}(c)=3, \operatorname{deg}^{+}(c)=2
$$

$$
\operatorname{deg}^{-}(d)=2, \operatorname{deg}^{+}(d)=2
$$

$$
\operatorname{deg}^{-}(e)=3, \operatorname{deg}^{+}(e)=3
$$

$$
\operatorname{deg}^{-}(f)=0, \operatorname{deg}^{+}(f)=0
$$

Thm 3. Let $G=(V, E)$ be a digraph. Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E|
$$

Regular Graph

A simple graph $G=(V, E)$ is called regular if every vertex of this graph has the same degree. A regular graph is called n-regular if $\operatorname{deg}(v)=n, \forall v \in V$.
eg.

$$
K_{4}:
$$

is 3 -regular.

Some Special Simple Graphs

Example 5.

The complete graph on n vertices, denoted by \boldsymbol{K}_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.

K_{3}

\boldsymbol{K}_{4}

Note. K_{n} is (n-1)-regular, $\left|V\left(K_{n}\right)\right|=n$,

$$
\left|E\left(K_{n}\right)\right|=\binom{n}{2}
$$

Example 6. The cycle $C_{n}, n \geq 3$, consists of n

 vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$, $\ldots,\left\{V_{n-1}, V_{n}\right\},\left\{V_{n}, V_{1}\right\}$.

Note C_{n} is 2-regular, $\left|V\left(C_{n}\right)\right|=n,\left|E\left(C_{n}\right)\right|=n$

Example 7. We obtained the wheel W_{n} when we add an additional vertex to the cycle C_{n} for $n \geq 3$, and connect this new vertex to each of the n vertices in C_{n}, by new edges.

Note. $\left|V\left(W_{n}\right)\right|=n+1,\left|E\left(W_{n}\right)\right|=2 n$,
W_{n} is not a regular graph if $n \neq 3$.

Example 8. The n-dimensional hypercube, or n-cube, denoted by Q_{n}, is the graph that has vertices representing the 2^{n} bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

Note. Q_{n} is n-regular, $\left|V\left(Q_{n}\right)\right|=2^{n},\left|E\left(Q_{n}\right)\right|=\left(2^{n} n\right) / 2=2^{n-1} n$

Some Special Simple Graphs

Def 5 . A simple graph $G=(V, E)$ is called bipartite if V can be partitioned into V_{1} and $V_{2}, V_{1} \cap V_{2}=\varnothing$, such that every edge in the graph connect a vertex in V_{1} and a vertex in V_{2}.

Example 9.

$\therefore C_{6}$ is bipartite.

Example 10. Is the graph G bipartite?

G

Yes!

Thm 4. A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Example 12. Use Thm 4 to show that G is bipartite.

G

- Example 11. Complete Bipartite graphs ($K_{m, n}$)

$K_{3,3}$

Note. $\left|V\left(K_{m, n}\right)\right|=m+n,\left|E\left(K_{m, n}\right)\right|=m n$, $K_{m, n}$ is regular if and only if $m=n$.

New Graphs from Old

Def 6. A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.
(Notice the f point w to connect)
Example 14. A subgraph of K_{5}

K_{5}

subgraph of K_{5}

Def 7. The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
Example 15.

Representing Graphs and Graph Isomorphism

※Adjacency list

Example 1. Use adjacency lists to describe the simple graph given below.

| b | Sol $:$ | Vertex |
| :--- | :--- | :--- |$|$| Adjacent Vertices | |
| :--- | :--- |
| a | b, c, e |
| b | a |
| c | a, d, e |
| d | c, e |
| e | a, c, d |

Example 2. (digraph)

Initial vertex	Terminal vertices
a	b, c, d, e
b	b, d
c	a, c, e
d	
e	b, c, d

※Adjacency Matrices

Def. $G=(V, E)$: simple graph, $V=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$. A matrix A is called the adjacency matrix of G if $A=\left[a_{i j}\right]_{n \times n}$, where $a_{i j}=\left\{1\right.$, if $\left\{v_{i j} V_{j}\right\} \in E$, Example 3.

$$
A_{1}={ }_{c}^{a} b\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad A_{2}=\begin{gathered}
b \\
b \\
d
\end{gathered}\left[\begin{array}{lll}
0 & 1 & c \\
d & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Note:

1.There are n ! different adjacency matrices for a graph with n vertices.
2.The adjacency matrix of an undirected graph is symmetric.
3. $a_{i j}=0$ (simple matrix has no loop)

Example 5. (Pseudograph) (Matrix may not be 0,1 matrix.)

Def. If $A=\left[a_{i j}\right]$ is the adjacency matrix for the directed graph, then

$$
a_{i j}= \begin{cases}1 & , \text { if } \stackrel{V_{i}}{\bullet} V_{j} \\ 0 & , \text { otherwise }\end{cases}
$$

(So the matrix is not necessarily symmetrical)

※Incidence Matrices

Def. Let $G=(V, E)$: be an undirected graph. Suppose that $v_{1}, \nu_{2}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, \ldots, e_{n}$ are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $\mathrm{n} \times \mathrm{m}$ matrix $M=\left[m_{i j}\right]$, where

$$
m_{i, j}=\left\{0 \text { otherwise. } 1 \text { when edge e e isindidert with } v_{i}\right\}
$$

Example 6.

Example 7.

$$
\begin{aligned}
& \\
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left[\begin{array}{cccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} & e_{8} \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

※Isomorphism of Graphs

G

G is isomorphic to H

Def 1.

The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is an one-to-one and onto function f from V_{1} to V_{2} with the property that $\underset{a \sim b \text { in } G_{1} \text { iff } f(a) \sim f(b) \text { in } G_{2}, \forall a, b \in V_{1},{ }^{2},}{ }$ f is called an isomorphism.

Example 8. Show that G and H are

isomorphic. ${ }_{u_{3}} \bullet{ }_{u_{2}}$

G

H

Sol.

The function f with $f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{4}, f\left(u_{3}\right)=v_{3}$, and $f\left(u_{4}\right)=v_{2}$ is a one-to-one correspondence between $V(G)$ and $V(H)$.
※Isomorphism graphs there will be:
(1) The same number of points (vertices)
(2) The same number of edges
(3) The same number of degree
※ Given figures, judging whether they are isomorphic in general is not an easy task.

Example 9. Show that G and H are not isomorphic.

Sol :

G has a vertex of degree $=1, H$ don't

Example 10.

Determine whether G and H are isomorphic.

Sol : $\because \ln G$, deg(a)=2, which must correspond to either t, u, x, or y in H degree
Each of these four vertices in H is adjacent to another vertex of degree two in H ,
which is not true for a in G
$\therefore \mathrm{G}$ and H are not isomorphic.

Example 11. Determine whether the graphs G and H are isomorphic.

Sol:

$$
\begin{aligned}
& f\left(u_{1}\right)=v_{6}, f\left(u_{2}\right)=v_{3}, f\left(u_{3}\right)=v_{4}, f\left(u_{4}\right)=v_{5}, f\left(u_{5}\right)=v_{1}, f\left(u_{6}\right)=v_{2} \\
& \Rightarrow \text { Yes }
\end{aligned}
$$

Connectivity

Def. 1 :
In an undirected graph, a path of length n from u to v is a sequence of $n+1$ adjacent vertices going from vertex u to vertex v.
(e.g., $P . u=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=v$.) (P has n edges.)

Def. 2:
path: Points and edges in unrepeatable trail: Allows duplicate path (not repeatable) walk: Allows point and duplicate path
Example

path: u, v, y
trail: u, v, w, y, v, x, y
walk: u, v, w, v, x, v, y

Def:

cycle: path with $u=v$
circuit: trail with $u=v$
closed walk: walk with $u=v$

Example

cycle: u, v, y, x, u
trail: u, v, w, y, v, x, u
walk: $u, v, w, v, x, v, y, x, u$

Paths in Directed Graphs

The same as in undirected graphs, but the path must go in the direction of the arrows.

Connectedness in Undirected Graphs

Def. 3:
An undirected graph is connected if there is a path between every pair of distinct vertices in the graph.

Def:

Connected component. maximal connected subgraph. (An unconnected graph will have several component)

Example 6 What are the connected components of the graph H ?

Def:

A cut vertex separates one connected component into several components if it is removed. A cut edge separates one connected component into two components if it is removed.

Example 8. Find the cut vertices and cut edges in the graph G.

Sol:

cut vertices: b, c, e cut edges:

$$
\{a, b\},\{c, e\}
$$

Connectedness in Directed Graphs

Def. 4: A directed graph is strongly connected if there is a path from a to b for any two vertices a, b. A directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graphs.

Example 9 Are the directed graphs G and H strongly connected or weakly connected?

strongly connected

weakly connected

Paths and Isomorphism

Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Example 12. Determine whether the graphs G and H are isomorphic.

Sol: No, Because G has no simple circuit of length three, but H does

Example 13. Determine whether the graphs G and H are isomorphic.

Sol.

Both G and H have 5 vertices, 6 edges, two vertices of deg 3, three vertices of deg 2, a 3-cycle, a 4-cycle, and a 5-cycle. $\Rightarrow G$ and H may be isomorphic.
The function f with $f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{4}, f\left(u_{3}\right)=v_{3}$,
$f\left(u_{4}\right)=v_{2}$ and $f\left(u_{5}\right)=v_{5}$ is a one-to-one correspondence between $V(G)$ and $V(H) . \Rightarrow G$ and H are isomorphic.

Counting Paths between Vertices

Theorem 2:

Let G be a graph with adjacency matrix A with respect to the ordering $v_{1}, v_{2}, \ldots, v_{n}$. The number of walks of length r from v_{i} to v_{j} is equal to $\left(A^{t}\right)_{i, j}$

Proof (Only simple examples)

Example 14. How many walks of length 4 are

 there from a to d in the graph G ?
Sol.

The adjacency matrix of G (ordering as a, b, c, d) is

$$
A=\begin{gathered}
a \\
b \\
\\
b \\
b
\end{gathered}\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \quad \Rightarrow \quad A^{4}=\left[\begin{array}{llll}
8 & 0 & 0 & 8 \\
0 & 8 & 8 & 0 \\
0 & 8 & 8 & 0 \\
8 & 0 & 0 & 8
\end{array}\right] \quad \Rightarrow 8
$$

a-b-a-b-d, a-b-a-c-d, a-c-a-b-d, a-c-a-c-d, a-b-d-b-d, a-b-d-c-d, a-c-d-b-d, a-c-d-c-d

Euler \& Hamilton Paths

Graph Theory

- 1736, Euler solved the Königsberg Bridge Problem (Seven bridges problem)

Q:Is there a way can each bridge once, and return to the starting point?

Königsberg Bridge Problem

Q: Is there a way, you can walk down each side, and back to the starting point?
Ans: (Because each time a point is required from one side to the point, then the other side out, so after each time you want to use a pair of side.

- connection must be an even number of sides on each point
- the move does not exist

Def 1:

An Euler circuit in a graph G is a simple circuit containing every edge of G.
An Euler path in G is a simple path containing every edge of G.

Thm. 1:

A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree.
Thm. 2:
A connected multigraph has an Euler path (but not an Euler circuit) if and only if it has exactly 2 vertices of odd degree.

Example 1. Which of the following graphs have an Euler circuit or an Euler path?

Euler circuit

none

Euler path

Example

Step 1: find the $1^{\text {st }}$ circuit

$$
C: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}
$$

Step 2: $H=G-C \neq \varnothing$, find subcircuit

$$
S C: v_{3}, v_{5}, v_{6}, v_{3}
$$

Step 3:

$$
\begin{aligned}
& C=C \cup S C, \\
& H=G-C=\varnothing, \text { stop }
\end{aligned}
$$

$C: v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{3}, v_{4}, v_{5}, v_{1}$

APPLICATIONS OF EULER PATHS AND CIRCUITS

- Euler paths and circuits can be used to solve many practical problems
\square traversing each street in a neighborhood
\square each road in a transportation network
\square each connection in a utility grid, or
\square each link in a communications network exactly once
- Among the other areas where Euler circuits and paths are applied is in
\square the layout of circuits,
\square in network multicasting, and
\square in molecular biology, where Euler paths are used in the sequencing of DNA

Hamilton Paths and Circuits

Def. 2: A Hamilton path is a path that traverses each vertex in a graph \boldsymbol{G} exactly once. A Hamilton circuit is a circuit that traverses each vertex in \boldsymbol{G} exactly once.

Example 1. Which of the following graphs have a Hamilton circuit or a Hamilton path?

Hamilton circuit: G_{1}

Hamilton path: G_{1}, G_{2}

Thm. 3 (Dirac's Thm.):

If (but not only if) G is a simple graph with $n \geq 3$ vertices such that the degree of every vertex in G is at least $n / 2$, then G has a Hamilton circuit.

Example

each vertex has deg $\geq n / 2=3.5$
\Rightarrow Hamilton circuit exists Such as: a, c, e, g, b, d, f, a

Thm. 4 (Ore's Thm.):

If G is a simple graph with $n \geq 3$ vertices such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for every pair of nonadjacent vertices u and v, then G has a Hamilton circuit.

Example

each nonadjacent vertex pair has deg sum $\geq n=7$
\Rightarrow Hamilton circuit exists
Such as: a, d, f, e, c, b, g, a

Applications of Hamilton Circuits

- The famous traveling salesperson problem or TSP (also known in older literature as the traveling salesman problem)

Shortest-Path Problems

Def:

1. Graphs that have a number assigned to each edge are called weighted graphs.
2. The length of a path in a weighted graph is the sum of the weights of the edges of this path.

Shortest path Problem:
Determining the path of least sum of the weights between two vertices in a weighted graph.

Example 1. What is the length of a shortest path between a and z in the weighted graph G ?

Sol. (1) ${ }_{a^{\oplus}}^{L=0}$
(2) ${\underset{d}{a}}_{\int_{d}}^{L=2}$

(4)

length=6

Dijkstra's Algorithm(find the length of a shortest path from a to z)
Procedure Dijkstra(G. weighted connected simple graph, with all weights positive)
$\left\{G\right.$ has vertices $a=v_{0}, v_{1}, \ldots, v_{n}=z$ and weights $w\left(v_{\dot{j}}, v_{j}\right)$ where $w\left(v_{i}, v_{j}\right)=\infty$ if $\left\{v_{i}, v_{j}\right\}$ is not an edge in $\left.G\right\}$
for $i:=1$ to n
$L\left(v_{i}\right):=\infty$
$L(a):=0$
$S:=\varnothing$
while $z \notin S$
begin
$u:=$ a vertex not in S with $L(u)$ minimal
$S:=S \cup\{u\}$
for all vertices v not in S

This algorithm can be extended to construct a shortest path.
trace(We add a variable record thing is u before v previous (v): Finally, going on from $z=u$ algorithm trace)

$$
\text { if } L(\mathrm{u})+w(u, v)<L(v) \text { then } L(v):=L(\mathrm{u})+w(u,
$$

V)
end $\{L(z)=$ length of a shortest path from ato $z\}$

Example 2. Use Dijkstra's algorithm to find the

 length of a shortest path between a and z in the weighted graph.

Contd

\Rightarrow path: a, c, b, d, e, z length: 13

Thm. 1

Dijkstra's algorithm finds the length of a shortest path between two vertices in a connected simple undirected weighted graph.

Thm. 2

Dijkstra's algorithm uses $O\left(n^{2}\right)$ operations (additions and comparisons) to find the length of a shortest path between two vertices in a connected simple undirected weighted graph with n vertices.

The Traveling Salesman Problem:

A traveling salesman wants to visit each of n cities exactly once and return to his starting point. In which order should he visit these cities to travel the minimum total distance?
Example (starting point D)

$$
\begin{aligned}
& D \rightarrow T \rightarrow K \rightarrow G \rightarrow S \rightarrow D: 458 \\
& D \rightarrow T \rightarrow S \rightarrow G \rightarrow K \rightarrow D: 504 \\
& D \rightarrow T \rightarrow S \rightarrow K \rightarrow G \rightarrow D: 540
\end{aligned}
$$

Planar Graphs

Def 1.
A graph is called planar if it can be drawn in the plane without any edge crossing. Such a drawing is called a planar representation of the graph.

Example 1: Is K_{4} planar?

K_{4}

$\therefore K_{4}$ is planar
K_{4} drawn with no crossings

Example 2: Is Q_{3} planar?

Q_{3}

$\therefore Q_{3}$ is planar

Example 3: Show that $K_{3,3}$ is nonplanar.

Sol.

In any drawing, aebd is cycle, and will cut the plane into two region

Regardless of which region c , could no longer put the f in that side staggered

Euler's Formula

A planar representation of a graph splits the plane into regions, including an unbounded region.
Example: How many regions are there in the following graph?

Sol. 6

Thm 1 (Euler's Formula)

Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then $r=e-V+2$.

Example 4: Suppose that a connected planar graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane?
Sol.

$$
\begin{aligned}
& V=20,2 e=3 \times 20=60, e=30 \\
& r=e-v+2=30-20+2=12
\end{aligned}
$$

Corollary 1

If G is a connected planar simple graph with e edges and v vertices, where $v \geq 3$, then $e \leq 3 v-6$.

Example 5: Show that K_{5} is nonplanar.
Sol.

$$
v=5, e=10 \text {, but } 3 v-6=9 \text {. }
$$

Corollary 2

If G is a connected planar simple graph, then G has a vertex of degree ≤ 5.
pf: Let G be a planar graph of v vertices and e edges.
If $\operatorname{deg}(V) \geq 6$ for every $v \in V(G)$

$$
\begin{aligned}
& \Rightarrow \sum_{V \in V(G)} \operatorname{deg}(V) \geq 6 V \\
& \Rightarrow 2 e \geq 6 v \quad \rightarrow \leftarrow(e \leq 3 v-6)
\end{aligned}
$$

Corollary 3

If a connected planar simple graph has e edges and v vertices with $v \geq 3$ and no circuits of length three, then $e \leq 2 v-4$.

Example 6: Show that $K_{3,3}$ is nonplanar by Cor. 3. Sol.

Because $K_{3,3}$ has no circuits of length three, and $v=6, e=9$, but $e=9>2 v-4$.

Kuratowski's Theorem

If a graph is planar, so will be any graph obtained by removing an edge $\{u, v\}$ and adding a new vertex w together with edges $\{u, w\}$ and $\{v, w\}$.

Such an operation is called an elementary subdivision.
Two graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivisons.

Example 7: Show that the graphs G_{1}, G_{2}, and G_{3} are all homeomorphic.

Sol: all three can be obtained from G_{1}

Thm 2. (Kuratowski Theorem)
A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_{5}.

Example 9: Show that the Petersen graph is not planar.

Sol:

It is homeomorphic to $K_{3,3}$.

Graph Coloring

Def. 1:

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Example:

5-coloring

3-coloring

Def. 2:

The chromatic number of a graph is the least number of colors needed for a coloring of this graph. (denoted by $\chi(G)$)

Example 2: $\chi\left(K_{5}\right)=5$

Note: $\chi\left(K_{n}\right)=n$

Example: $\chi\left(K_{2,3}\right)=2$.

Note: $\chi\left(K_{m, n}\right)=2$
Note: If G is a bipartite graph, $\chi(G)=2$.

Example 1: What are the chromatic numbers of the graphs G and H ?

G
Sol: G has a 3-cycle

$$
\Rightarrow \chi(G) \geq 3
$$

G has a 3-coloring
$\Rightarrow \chi(G) \leq 3$
$\Rightarrow \chi(G)=3$

H
Sol: any 3-coloring for $H-\{(a, g)\}$ gives the same color to a and g

$$
\Rightarrow \chi(H)>3
$$

4-coloring exists $\Rightarrow \chi(H)=4$

3 if n is odd.
C_{n} is bipartite when n is even.

Thm 1. (The Four Color Theorem)
The chromatic number of a planar graph is no greater than four.

Corollary

Any graph with chromatic number >4 is nonplanar.

