# Problem sets 1,2: Systems of linear Equations-Natrices 

## CEDC102: Linear Algebra and Matrix Theory

## Manara University

2023-2024

[^0]Problem 1. Suppose $A$ is a $3 \times 3$ matrix, $B$ is a $2 \times 3$ matrix, $x$ is a 3 -component column vector, and $y$ is a 2 -component column vector.
What is the shape of the output, say nonsense if the operation doesn't make sense

$$
A B, \quad B A, \quad A B y, \quad B A x, \quad y^{T} A x \quad x^{T} y \quad y x^{T} \quad y x \quad A^{2} \quad B^{2} \quad \frac{x}{A} \quad \frac{x}{x} \quad \frac{x}{3} \quad \frac{B}{3}
$$

Problem 2. Consider Gaussian elimination on the following system of equations

$$
\begin{array}{r}
2 x+5 y+z=0 \\
4 x+d y+z=2 \\
y-z=3
\end{array}
$$

(Write your solution in matrix form.)

- What number $d$ forces you to do a row exchange during elimination, and what (non-singular) triangular system do you obtain for that $d$ ?
- What value of $d$ would make this system singular (no third pivot, i.e. no way to get a triangular system with 3 nonzero values on the diagonal)?

Problem 3 A system of linear equations $A x=b$ cannot have exactly two solution, why?

Problem 4 Suppose we want to solve $A x=b$ for more than one right-hand side $b$. For example, suppose

$$
A=\left[\begin{array}{ccc}
1 & 6 & -3 \\
-2 & 3 & 4 \\
1 & 0 & -2
\end{array}\right], \quad b_{1}=\left[\begin{array}{l}
7 \\
3 \\
0
\end{array}\right], \quad b_{2}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]
$$

Explain why solving both $A x_{1}=b_{1}$ and $A x_{2}=b_{2}$ is equivalent to solving $A X=B$ where $X$ is an unknown matrix (of what shape?) and $B$ is a given matrix on the right-hand-side. Give $B$ explicitly, and relate $X$ to your desired solutions $x_{1}$ and $x_{2}$.

Solve your $A X=B$ equation by forming the augmented matrix (AB), reducing it to upper-triangular form (once), and doing backsubstitution (twice) to obtain $X$ and hence $x_{1}$ and $x_{2}$

Problem 5 Consider the three $4 \times 4$ matrices

$$
A=\left(\begin{array}{cccc}
1 & -3 & 0 & 3 \\
& 1 & 1 & 2 \\
& & 1 & -1 \\
& & & 1
\end{array}\right), B=\left(\begin{array}{cccc}
-3 & -1 & 1 & -2 \\
-3 & 0 & 0 & -3 \\
1 & 3 & 3 & -3 \\
2 & 3 & 2 & 0
\end{array}\right), C=A(A B)^{-1}
$$

Compute the third column of $C^{-1}$ without computing the whole inverse of any matrix.

حَــامعة الـَمَـنارة

Problem 6 Consider the following $5 \times 5$ matrix, which is almost upper triangular:

$$
A=\left(\begin{array}{ccccc}
2 & -2 & 0 & 1 & 1 \\
2 & -1 & 1 & -2 & 1 \\
& 3 & 4 & -3 & 1 \\
& & -2 & -5 & -3 \\
& & & 7 & 3
\end{array}\right)
$$

Compute (by hand) its LU factorization $A=L U$ via Gaussian elimination (i.e. give both $L$ and $U$ ). Notice any special pattern to the nonzero entries in $L$ and/or $U$ ?

Problem 7 consider

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]
$$

for some numbers $a, b, c$.

- When you perform the usual Gaussian elimination steps to $L$, what matrix will you obtain?
- If you apply the same row operations to $I$, what matrix will you get?
- If you apply the same row operations to $L B$ for some $3 \times n$ matrix $B$, what will you get?

Problem 8 Suppose that $A$ is a $4 \times 4$ matrix:

$$
A=\left(\begin{array}{cccc}
1 & 3 & 2 & 5 \\
-2 & 1 & 1 & \\
4 & 2 & & \\
-1 & & &
\end{array}\right)
$$

a. Convert $A$ into a standard lower triangular matrix, of the form
as a product of $A$ with one or more permutation matrices on the left and/or right.
b. Suppose that we want to solve $A x=b$ for $b=[26,-1,10,-1]$. Using your answer from (a), write $x=A^{-1} b$ in the following form:

- $y=$ something easy with $b$ ?
- forward-substitution solve of $L z=y$
- $x=$ something easy with $z$ ?

Problem9 For which three numbers $k$ does elimination break down? Which is fixed by a row exchange? In each case, is the number of solutions 0 or 1 or $\infty$ ?

$$
\begin{gathered}
k x+3 y=6 \\
3 x+k y=-6
\end{gathered}
$$

Problem 10: Consider the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
5 & 4 & 3 \\
4 & 7 & 6
\end{array}\right]
$$

1. write it as the sum of a symmetric matrix and an skew-symmetric matrix
2. For a general matrix $X$, suppose you want to write it as $X=S+A$, where $S$ is symmetric and $A$ is skew-symmetric. Can you find formulas for $S$ and $A$ in terms of $X$ only?

[^0]:    https://manara.edu.sy/

