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Vectors in R”

« Vectors in the plane:

a vector x in the plane is represented by a directed line segment with its initial point at
the origin and its terminal point at (x,, x,).

Y Y
A A
----------------------- s ()(1,)(2) (X3, Xz) Ord-ered pair
' X Terminal point
- ' » X (0,0) » X
a point Initial point a vector

v | X X= first component of x
X, = second component of x

Vector Spaces https://manara.edu.sy/
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« EX: y ,
Nl .1
2+ o 2
|3
l__
| | | =1 1
| 2 3 I
Vector Addition u:{ul}, V:[Vl] [+ V:|:U1+V1:|
4 Z U, + Vv,
. v cy,
Scalar Multiplication cv =—c s 1= on —Vv=(-)v=>u-v=u+(-V)
2 2
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= -3pace: R”
R! = 1-space = set of all real number (x;,X;)
R? = 2-space = set of all ordered pair of real numbers (x;,X,,X;)

R ® = 3-space = set of all ordered triple of real numbers (X,,%,,---,X,)

R" = n-space = set of all ordered z-tuple of real numbers

= Notes: An z-tuple (x;, x,, ..., X,) can be viewed as
(1) a point in R” with the x;’s as its coordinates.
(2) a vector xin R" with the x;’s as its components. X =

a vector xin R” will be represented also as x = (x;,X,, -, X,)

n
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u=(u,U,,-,u,), v:(vl,vz,o--,l/,?‘)"“ (two vectors in R”)
» Equal:
u=vifandonlyif ¢, =1, U, =V, -, U, =V,

= Vector addition (the sum of zand v):
u+v=W-+v,u+v, -, U +V)

» Scalar multiplication (the scalar multiple of #by ¢):
cu = (cuy,cu,,---,cu,)

= Notes:
The sum of two vectors and the scalar multiple of a vector in R” are called the
standard operations in R".
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« Negative:
U = (= Uy, = Uy, = U)
« Difference:
U=v=(th =Gty =y, oo, U, = V)

« Zero vector:
0=(,0,---,0)

= Notes:

(1) The zero vector 0 in R” is called the additive identity in R".
(2) The vector —v is called the additive inverse of v

https://manara.edu.sy/
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« EX:
Let #= (-1, 0, 1) and v= (2, -1, 5) in R>.
Perform each vector operation:

() u+v (D) 2u (o) v-2u

Sol:
() u+ v=(-1,0,1)+(2,-1,5) =(1,-1,6)

(B) 2u=2(-1,0,1) = (=2, 0, 2)

(o) v—2u=(2,-1,5)-(-2,0,2) =(4,-1,3)

https://manara.edu.sy/
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« Theorem: (Properties of vector addition and scalar multiplication)
Let z, v, and wbe vectors in R” and let cand dbe scalars

(1) @+ visavectorin R” Closure under addition

(2) u+v=v+u Commutative property of addition

(3) (#+ v) + w= u+ (v+ w) Associative property of addition

(4) u+0=u Additive identity property

(5) u+(-u)=0 Additive inverse property

(6) cuis avectorin R Closure under scalar multiplication
(7) du+v)=cu+ cv Distributive property

(8) (c¢+ du=cu+ du Distributive property

(9) ddu) = (cdu Associative property of multiplication

(10) (@)= u Multiplicative identity property

Vector Spaces
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« Ex : (Vector operations in R?)
Let = (2, -1, 5, 0), v=(4, 3,1, -1) and w= (-6, 2, 0, 3) be vectors in R*. Solve xfor
each of the following:
(4) x=2u—(v+3w)
(D) 3(x+w)=2u-v+x

Sol: (@) x=2u—(v+3wW)=2u—v-3w
=(4,-2,10,0)-(4,3,1,-1) - (-18, 6,0, 9) = (18, -11, 9, -8)

D) 3Xx+W)=20-V+X=>3X+3W=2U-V+X
X —X=20-V-3W=2X=2U—-V-3W=>X=U—-sV-3W
xX=(2150+(-2,-2,-2,2)+(9.-3,0,-2)=(09,-%., 2, -4)

21 2
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« Theorem : (Properties of additive identity and additive inverse)

Let vbe a vector in R”, and ¢ be a scalars. Then the properties below are true:
(1) The additive identity is unique. That is, if Z+ v= v, then =0
(2) The additive inverse of vis unique. That is, if v+ #=0, then u=-v
(3)0v=0
(4) c0=0
(5) If cv=0,then c=0o0r v=0

6)-(-n=v
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= Linear combination:
The vector xis called a linear combination of v, v, ..., ¥, If it can be expressed in
theform x =cv, +c,v, +---+Cc Vv, €, 6, ..., ¢, scalars

« Ex5: Given x= (-1, -2, -2), u= (0, 1, 4), v= (-1, 1, 2), and w= (3, 1, 2) in R,
find 4, b, and csuch that x= au+ bv+ cw.
Sol:
-b + 3¢ = -1
a+ b+ ¢ = -2
4a + 2b + 2c

—a=1 b=-2, c=-1

I
|
N

Thus x=u-2v—w
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Vector Spaces

« Vector spaces:
Let V' be a set on which two operations (vector addition and scalar multiplication) are
defined. If the following axioms are satisfied for every @, v, and win V and every
scalar cand 4, then Vis called a vector space.

Addition:
(1) u+ visin V Closure under addition
(2) u+v=v+u Commutative property
) u+(v+w=(u+vV+w Associative property
(4) V has a zero vector O: forevery uin V, u+0=u Additive identity

(5) Forevery zin V, there is a vector in Vdenoted by —&z. u+ (—z#) =0  Scalar identity

https://manara.edu.sy/
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Scalar multiplication:
(6) cuisavectorin V Closure under scalar multiplication
(7) du+v)=cu+cv Distributive property
(8) (c+ du=cu+ du Distributive property
(9) ddu)=(cdu Associative property
(10) () = u Scalar identity

= Notes:
(1) A vector space (V, +, .) consists of four entities:
a nonempty set Vof vectors, a set of scalars, and two operations (+, .)

(2) V={0} Zero vector space
(3) K= R Real Vector Space = K= C: Complex Vector Space

https://manara.edu.sy/
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« Examples of vector spaces:
(1) n-tuple space: V= K"
(U, Uy, u,)+ (W, V-, v,) = (U + v, U, + V-, U, + V) Vector addition

k(uy,u,,---,u,) = (kuy,ku,,--- ,ku,) scalar multiplication

(2) Matrix space: V=M, (the set of all z2x 7 matrices with real values)

EX: (m=n=2)
u, u V., V u, +Vv, U, +V ..
{ 11 12} J{ 1 12} :[ ey - 12} vector addition
U21 U22 I/21 I/22 U21 + I/21 U22 + |/22
k[uﬂ Ulz} = {kull kulz} scalar multiplication
U21 U22 ku21 kU22

https://manara.edu.sy/



P

deola
oLal
(3) Infinite Sequences space: Vv = R~ (set of all infinite sequences of real numbers)
(Un)neN + (Vn)neN = (u/?+v/7)/7€N C(Un)neN = (cun)neN

(4) polynomial space: V/ = P_ (the set of all real polynomials)
0+ g)(x) = p(x) + g(x) (cp)(x) = cp(x)

(5) n-th degree polynomial space: V= P (x)
(the set of all real polynomials of degree 7 or less)
px) +g(x) = (&, + &) + (&, +B)X +--- + (&, + )X
ko(X) = ka, + kax +--- + ka X"

(6) Function space: V' = ¢(—o0,) (the set of all real functions)
(7 + 9)(x) = 1(x) + 9(x) (k1) (x) = kf(X)

https://manara.edu.sy/
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« Theorem: (Properties of scalar multiplication)
Let vany element of a vector space V, and let ¢ be any scalars. Then the following
properties are true:
(1) 0v=0 (2) c0=0
(3) If cv=0,then c=00r v=0 4) (F1)v=-v
« Note: To show that a set is not a vector space, you need only find one axiom that is not

satisfied

. Ex: V= K =the set of all ordered pairs of real numbers
vector addition: (u,,u,) + (v, ») = (4, + V,,u, + 1)
scalar multiplication: c(v,,u,) = (cu,,0) Verify that V'is not a vector space.

https://manara.edu.sy/
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Sol:
11,1)=(1,00#(2,1)
= the set (together with the two given operations) is not a vector space

« EX 2: Set of all real polynomials of degree z Is Not a vector space. Why?

« Complex Vector Spaces C*:
A vector space in which scalars are allowed to be complex numbers is called a complex

vector space

Vectors in €™ If nis a positive integer, then a complex z-tuple is a sequence of z
complex numbers v= (v, ¥, ..., V;,). The set of all complex z-tuples is called complex

n-space and is denoted by C*.

https://manara.edu.sy/
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« EX(C°):  u=(1,-i+1,-2),v=(53,2), u+v=QA+14 -1 +4,-2+2J)
= Note: The complex vector space C”is a generalization of the real vector space X"

= Vector Conjugate
v=(,V,, ..,.V,) = Vv=(W12, ...,Vn)

Ex: u=(@B+/i -2/, 5 = wu=(3-/, 2/ 5)

= Properties of vector conjugate
u,veC”

https://manara.edu.sy/
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Subspaces of Vector Spaces
= Subspace:
(V,+,.) :avector space
W#0 3 nonempty subset
wecv
(W,+,.) : a vector space (under the operations of addition and scalar

multiplication defined in V)
= Wis a subspace of V

= Trivial subspace: Every vector space V has at least two subspaces

(1) Zero vector space {0} is a subspace of V.
(2) V is a subspace of V.

https://manara.edu.sy/
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= Theorem: (Test for a subspace)

If Wis a nonempty subset of a vector space V, then W is a subspace of Vif and
only if the following conditions hold:

(1) If # and v arein W, then a+ visin W.
(2) If zis in Wand cis any scalar, then czis in W,

= Notes:

(1) If # and v are in W, cand dare any scalars, then cu+ dvis in W.
= WIs a subspace of V

(2) If Wis a subspace of a vector space V, then W contains the zero vector 0 of V

https://manara.edu.sy/
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Subspace of R?

—14

-2+
W={(0,0))

W = all points on a line
passing through the origin

(1) {0} 0=(0,0)
(2) Lines through the origin

(3) K

https://manara.edu.sy/
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« Ex : (A Subset of R?> That Is Not a Subspace) @~ _—¢—=- .
Show that the subset of & consisting of all points
on X* + )* =1 is not a subspace . _—
Sol: :
points (1, 0) and (0, 1) are in the subset, but their
sum (1, 0) + (0, 1) = (1, 1) is not. (not closed under addition)

The unit circle is
not a subspace
- 9,
of R-.

(0,—1)
- Ex : Subspace of &
(1) {0} 0=(0,0,0)
(2) Lines through the origin
(3) Planes through the origin
4) F

https://manara.edu.sy/
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« Ex : (The set of first-quadrant vectors ismfji"ohfé subspace of R?)
Show that W ={(x,,x,): x, >0and x, >0} , with the standard operations, is not a
subspace of &
Sol:
letv =11 elW
(-Duv=(-1DA1D=(-1 -1 eW (notclosed under scalar multiplication)

= Wis not a subspace of &

. Ex 5: (Determining subspaces of &%)

Which of the following subsets is a subspace of /°?
(@) W={0q .1 | %, X, € R} No (0=(0,0,0) ¢ W)
(b)W:{(X11X1+X31X3) |X1’X3€R} Yes

https://manara.edu.sy/
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« Ex : (A subspace of M,,,)

Let Whe the set of all 2x2 symmetric matrices. Show that Wis a subspace of the vector
space M, ,, with the standard operations of matrix addition and scalar multiplication

« EX : (The set of singular matrices is not a subspace of A, ,)

Let Wbe the set of singular matrices of order 2. Show that Wis not a subspace of A4,
with the standard operations

« Ex : (Determining subspaces of &%)

Which of the following two subsets is a subspace of &?
(a) The set of points on the line given by x+2y=0. Yes
(D) The set of points on the line given by x+2y=1. No

https://manara.edu.sy/



P

6jliall

« EX : (Subspaces of Functions)
Let W be the vector space of all functions defined on [0, 1]
W, = set of all polynomial defined on [0, 1]
W, = set of all functions differentiable on [0, 1]
W, = set of all functions continuous on [0, 1]
W, = set of all functions integrable on [0, 1]

Show that W, c W, c W, c W, C W; and that W;is a
subspace of W for 7</

« Ex 10: P, is a subspace of £,

Wy
Integrable
functions

W,

Differentiable
functions

Wi
Polynomial
\ functions g
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= Theorem (The intersection of two subspaces is a subspace)
If Vand Ware both subspaces of a vector space U, then the intersection of Vand

(denoted by VN W) is also a subspace of U.

« Note:

The union of Fand G (denoted by FUG) is not necessarily a t
subspace of V

« EX12: Let V=R b-----5 (1,1
F={(xy) e R|x=0},G ={(x.)) e R*| y=0} /

F NG ={0} ol o
0,)(eF)+L0)(eG)=LY)eFUG

https://manara.edu.sy/
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« Theorem : (The sum of two subspaces is a subspace)

If Fand G are both subspaces of a vector space V, then the sum of Fand G (denoted by F
+ G), consisting of all the elements #+ v|ue £ ve G. Itis also a subspace of V.
« EX13: Let V=R

F={(x.y) e R°|x=0}, G ={(x.)) e R*| y=(} F+G =R’

« EX14: Let V=R
F={(xy.2) e R}|ly=2z=0} and G ={(x.y,2) € R*| x=z=0}

F+G={(xy,2)eR|z=0}

https://manara.edu.sy/
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The Column Space of A
The most important subspaces are tied directly to a matrix A.

To solve Ax =b.

If A is not invertible, the system is solvable for some b and not solvable for other b.

We want to describe the good right sides b-the vectors that can be written as A times some
vector X

Those b' s form the "column space" of A

Remember: Ax 1S a combination of the columns of A.

https://manara.edu.sy/
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Start with the columns of A and take all their linear combinations.
This produces the column space of A.

It is a vector subspace space of R™made up of column vectors

DEFINITION The column space consists of all linear combinations of the
columns . The combinations are all possible vectors Ax. They fill the column
space C(A).

Note: The system AX = b is solvable if and only if b is in the column space of A.

https://manara.edu.sy/
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1 @
X 0 A=|4 3
3 2 3
{ 1 [0
4 b=414|4+ 313
2. 3
2 &
/} Ax =0 has & = g

Plane = C(A) = all vectors Ax

The column space C(A) is a plane containing the two columns. Ax = b is
solvable when b is on that plane. Then b is a combination of the columns.

https://manara.edu.sy/
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Spanning Sets and Linear Independence

« Linear combination:
A vector vin a vector space Vis called a linear combination of the vectors #, %, ...,
u.in Vif vcan be written in the form

V=CU,+CU,+-+CU, 6, ..., ¢ scalars
« EX 1: (Finding a linear combination)
v, = (1, 2, 3), v, = (0, 1, 2), v, = (-1,0,1)

Prove (2) w=(1, 1, 1) is a linear combination of v;, »;, ¥,
(D) w= (1, -2, 2) is not a linear combination of v;, v;, v;

https://manara.edu.sy/
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Sol: (@) w=qv,+ %+ GW
1,1,1) =¢(1,2,3)+(0,1,2)+¢(-1,0,1)

=(a-a.2+6,26+q)

C, - ¢, =1
= 2¢, + ¢, =1
3, + 2¢c, + ¢ =1
(1 0 -1]|1] 10 -1]1
121 0l1 Gauss-Jordan Ellmmatlon> 01 2|1
_3 2 1 1_ _O 0 0 O_

= =1+t ¢, =-1-2t ¢, =1t (thissystem has infinitely many solutions)

I=1=>w=2v -3+ 1

https://manara.edu.sy/



[y

6jliall

(B) W= v+ 6¥+ G¥,

(1 0 -1|1 —— 10 -1]1
121 0l Gauss-Jordan Ellmlnatlon> 01 2|4
_3 2 1 2_ _O 0 0 7_

= this system has no solution (0 # 7)
= WE oW+ GV, + Gy
= The span of a set: span ()

If S={w, %,..., v} IS a set of vectors In a vector space V, then the span of § Is the set
of all linear combinations of the vectors in S,

span(S) = {cV, + GV, + -+ + GV, | V¢, € K|
(the set of all linear combinations of the vectors in )

https://manara.edu.sy/
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= A spanning set of a vector space:
If every vector in a given vector space can be written as a linear combination of vectors
In a given set S, then Sis called a spanning set of the vector space.

= Notes:
span($) =V
= Sspans (generates) Vor Vis spanned (generated) by S
S'is spanning set of V'

« Notes:
(1) span(@) = {0} (2) S < span(S)
(3) 51' 52 cV

5, < S, = span(S,) < span(S,)

https://manara.edu.sy/
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« EX 2: (Examples of Spanning Sets)
The set $=(1, 0, 0) + (0, 1, 0) + (0, 0, 1) spans &
The set S={1, x, x*} spans F,

- Ex 3: (A spanning set for &)

The set S={(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans & because any vector = (1,. u,, uy) in
R can be written as
u=u,(1,0,0)+ 1,0, 1, 0) + u;(0, 0, 1) = (. u,, ;)

. Ex 4: (A spanning set for &)
Show that the set S, = {(1, 2, 3), (0, 1, 2), (-2, 0, 1)} spans &°

Sol: We must determine whether an arbitrary vector #= (. i, 1) in & can be as a
linear combination of v;, ¥, and v;.

https://manara.edu.sy/
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C, - 26, = U,
UeRP=u=cqcVv,+cV,+cV, = 2c + = U,
3¢, + 2¢, + ¢ = U,
1 0 -2
A=2 1 00
32 1

= Ax= bhas exactly one solution for every z= spans(S, ) = &

« Ex 5: (A Set Does Not Span X°)
From Example 1: the set S, = {(1, 2, 3), (0, 1, 2), (-1, 0, 1)} does not span & because
w= (1, -2, 2) is in & and cannot be expressed as a linear combination of the vectors in
S,.
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The vectors in S, do not lie in a common  The vectors in S, lie in a common plane

plane
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« EX 6: (A Geometric View of Spanning in ]1%3)

*Z

span {vj span {vy, v,

k]"r'l + "{{2‘:2

VIS a nonzero vector

span{ v} is the line through the span{v;, 5} Is the plane through the
origin determined by v origin determined by v; and v,

https://manara.edu.sy/



