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 Vectors in ℝn 

 Vector Spaces

 Subspaces of Vector Spaces

 Spanning Sets and Linear Independence

 Basis and Dimension

 Rank and Nullity of a Matrix
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Vectors in ℝn

 Vectors in the plane:

a point a vector

( , )1 2x x

(0,0)

( , )x x1 2

Terminal point

Initial point
x

y

x

y

x

a vector 𝒙 in the plane is represented by a directed line segment with its initial point at

the origin and its terminal point at (𝑥1, 𝑥2).

x

x
 

  
 

1

2

x
x1  first component of x
x2  second component of x

ordered pair 
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 
  

 
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 
  

 
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Vector Addition , ,
u v u v

u v u v

     
             

1 1 1 1

2 2 2 2

u v u v

Scalar Multiplication
v cv

c c
v cv

   
    

   

1 1

2 2

v ( ) ( )       1v v u v u v

 Ex :
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 Ex :
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( , , , )nx x x1 2

ℝ1  1-space  set of all real number

ℝ2  2-space  set of all ordered pair of real numbers

ℝ 3  3-space  set of all ordered triple of real numbers

( , )x x1 2

( , , )x x x1 2 3

 n-space: ℝn

ℝn  n-space  set of all ordered n-tuple of real numbers

 Notes: An n-tuple (x1, x2, …, xn) can be viewed as 

(1) a point in ℝn with the xi’s as its coordinates.

n

x

x

x

 
 

  
 
  

1

2x(2) a vector x in ℝn with the xi’s as its components.

a vector x in ℝn will be represented also as ( , , , )nx x x 1 2x
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(two vectors in ℝn)

u  v if and only if 

 Vector addition (the sum of u and v):

 Scalar multiplication (the scalar multiple of u by c):

The sum of two vectors and the scalar multiple of a vector in ℝn are called the

standard operations in ℝn.

( , , , ), ( , , , )n nu u u v v v 1 2 1 2u v

,  , , n nu v u v u v  1 1 2 2

( , , , )n nu v u v u v    1 1 2 2u v

( , , , )nc cu cu cu 1 2u

 Notes:

 Equal:
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 Difference:

 Zero vector:

( , , , )n nu v u v u v    1 1 2 2u v

(0, 0, , 0)0

 Notes:

 Negative:

( , , , )nu u u    1 2u

(1) The zero vector 0 in ℝn is called the additive identity in ℝn.

(2) The vector  –v is called the additive inverse of v.
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 Ex :

Let u  (1, 0, 1) and v  (2, 1, 5) in ℝ3.

Perform each vector operation:

(a) u  v (b) 2u (c) v  2u

Sol:

(a) u  v  (1, 0, 1)  (2, 1, 5)  (1, 1, 6)

(b) 2u  2 (1, 0, 1)  (2, 0, 2)

(c) v  2u  (2, 1, 5)  (2, 0, 2)  (4, 1, 3)
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 Theorem: (Properties of vector addition and scalar multiplication)

Let u, v, and w be vectors in ℝn, and let c and d be scalars

(1)  u  v is a vector in ℝn Closure under addition

(2)  u  v  v  u Commutative property of addition

(3)  (u  v)  w  u  (v  w) Associative property of addition

(4)  u  0  u Additive identity property

(5)  u  (–u)  0 Additive inverse property

(6)  cu is a vector in Rn Closure under scalar multiplication

(7)  c(u  v)  cu  cv Distributive property

(8)  (c  d)u  cu  du Distributive property

(9)  c(du)  (cd)u Associative property of multiplication

(10) 1(u)  u Multiplicative identity property
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 Ex : (Vector operations in ℝ4)

Let u  (2, 1, 5, 0), v  (4, 3, 1, 1) and w  (6, 2, 0, 3) be vectors in ℝ4. Solve x for

each of the following:

(a) x  2u  (v  3w)

(b) 3(x  w)  2u  v  x

Sol: (a) x  2u  (v  3w)  2u  v  3w
 (4, 2, 10, 0)  (4, 3, 1, 1)  (18, 6, 0, 9)  (18, 11, 9, 8) 

3( ) 2 3 2

3 2 3 2 2 3

(2, 1, 5, 0) ( 2, , , ) (9, 3, 0, ) (9, , , 4)

        

           

          

1 3
2 2

3 1 1 9 11 9
2 2 2 2 2 2

3x w u v x x w u v x

x x u v w x u v w x u v w

x

(b)
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 Theorem : (Properties of additive identity and additive inverse)

Let v be a vector in ℝn, and c be a scalars. Then the properties below are true:

(1) The additive identity is unique. That is, if u  v  v, then u  0

(2) The additive inverse of v is unique. That is, if v  u  0, then u  –v

(3) 0v  0

(4) c 0  0

(5) If cv  0, then c  0 or v  0

(6) –(– v)  v
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 Linear combination:

The vector x is called a linear combination of v1, v2, …, vn if it can be expressed in

the form 1 2 nc c c   
1 2 nx v v v c1, c2, …, cn: scalars

 Ex 5: Given x  (–1, –2, –2), u  (0, 1, 4), v  (–1, 1, 2), and w  (3, 1, 2) in ℝ3,

find a, b, and c such that x  au  bv  cw.

Sol:

3 1

2

4 2 2 2

1,  2,  1

b c

a b c

a b c

a b c

   

   

   

     

Thus x  u  2v  w
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Vector Spaces

 Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are

defined. If the following axioms are satisfied for every u, v, and w in V and every

scalar c and d, then V is called a vector space.

(1)  u  v is in V Closure under addition

(2)  u  v  v  u Commutative property

(3)  u  (v  w)  (u  v)  w Associative property

(4) V has a zero vector 0: for every u in V, u  0  u Additive identity

(5) For every u in V, there is a vector in V denoted by –u: u  (–u)  0

Addition:

Scalar identity
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Scalar multiplication:

(6)  cu is a vector in V Closure under scalar multiplication

(7)  c(u  v)  cu  cv Distributive property

(8)  (c  d)u  cu  du Distributive property

(9)  c(du)  (cd)u Associative property

(10) 1(u)  u Scalar identity

 Notes:

(1)  A vector space (V, , .) consists of four entities:

a nonempty set V of vectors, a set of scalars, and two operations (, .)

(2) V  {0} zero vector space

(3) K  R: Real Vector Space K  C: Complex Vector Space
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 Examples of vector spaces:

(1) n-tuple space: V  Rn

Ex: (m  n  2)

vector addition

scalar multiplication

( , , , ) ( , , , ) ( , , , )n n n nu u u v v v u v u v u v    1 2 1 2 1 1 2 2

( , , , ) ( , , , )n nk u u u ku ku ku1 2 1 2

(2) Matrix space: V  Mmxn (the set of all m×n matrices with real values)

u u v v u v u v

u u v v u v u v

      
            

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u ku ku
k

u u ku ku
   

   
   

11 12 11 12

21 22 21 22

vector addition

scalar multiplication
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(4) polynomial space:

( )( ) ( ) ( ) ( )( ) ( )p q x p x q x cp x cp x   

(3) Infinite Sequences  space:  V R  (set of all infinite sequences of real numbers)

( ) ( ) ( + ) ( ) ( )n n N n n N n n n N n n N n n Nu v u v c u cu      

(the set of all real polynomials)V P

(5) n-th degree polynomial space: V  Pn(x)
(the set of all real polynomials of degree n or less)

( ) ( ) ( ) ( ) ( ) n
n np x q x a b a b x a b x       0 0 1 1

( ) n
nkp x ka ka x ka x   0 1

(6) Function space:  ( ),V c    (the set of all real functions)

( )( ) ( ) ( ) ( )( ) ( )f g x f x g x kf x kf x   
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 Theorem: (Properties of scalar multiplication)

Let v any element of a vector space V, and let c be any scalars. Then the following

properties are true:

(1) 0v  0 (2) c 0  0

(3) If cv  0, then c  0 or v  0 (4) (–1)v  –v

 Ex : V  R2  the set of all ordered pairs of real numbers

vector addition:

scalar multiplication: Verify that V is not a vector space.

( , ) ( , ) ( , )u u v v u v u v   1 2 1 2 1 1 2 2

( , ) ( ,0)c u u cu1 2 1

 Note: To show that a set is not a vector space, you need only find one axiom that is not

satisfied
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Sol:

1(1, 1)  (1, 0) ≠ (1, 1)

⇒ the set (together with the two given operations) is not a vector space

 Ex 2: Set of all real polynomials of degree n Is Not a vector space. Why?

 Complex Vector Spaces C n :

A vector space in which scalars are allowed to be complex numbers is called a complex

vector space

Vectors in C n: If n is a positive integer, then a complex n-tuple is a sequence of n
complex numbers v  (v1, v2, ..., vn). The set of all complex n-tuples is called complex

n-space and is denoted by C n.
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 Note: The complex vector space C n is a generalization of the real vector space Rn

 Ex (C3): u  (1, i  1, 2), v  (i, 3, 2i), u  v  (1  i, i  4, 2  2i)

(3 , 2 , 5) (3 , 2 , 5)i i i i     u u Ex :

 Properties of vector conjugate

 Vector Conjugate

1 21 2, ,  ..( )., , ,  . ).,( . nnv v v v v v v v

(1) (2) u u

(3)   u v u v

,c c c C u u

, nCu v
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Subspaces of Vector Spaces

 Subspace:

: a vector space

: a nonempty subset

: a vector space (under the operations of addition and scalar
multiplication defined in V)

⇒W is a subspace of V

(1) Zero vector space {0} is a subspace of V.

(2) V is a subspace of V.

(V, , .) 

(W, , .) 

 Trivial subspace: Every vector space V has at least two subspaces

𝑊 ≠ ∅
𝑊 ⊆ 𝑉
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If W is a nonempty subset of a vector space V, then W is a subspace of V if and

only if the following conditions hold:

(1) If  u and v are in W, then  u  v is in W.

(2) If u is in W and c is any scalar, then cu is in W.

 Theorem: (Test for a subspace)

 Notes:

(1) If u and v are in W, c and d are any scalars, then cu  dv is in W.
⇒ W is a subspace of V

(2) If W is a subspace of a vector space V, then W contains the zero vector 0 of V
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 Ex : Subspace of  ℝ2

(1) {0} 0  (0, 0)

(2) Lines through the origin

(3) R2
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 Ex : (A Subset of ℝ2 That Is Not a Subspace)

(1) {0} 0  (0, 0, 0)

(2) Lines through the origin

(3) Planes through the origin

(4) R3

 Ex : Subspace of R3

Show that the subset of R2 consisting of all points 

on x2 + y2  1 is not a subspace

(not closed under addition)

points (1, 0) and (0, 1) are in the subset, but their

sum (1, 0)  (0, 1)  (1, 1) is not.

Sol:
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 Ex : (The set of first-quadrant vectors is not a subspace of ℝ2)

Sol:

Show that , with the standard operations, is not a

subspace of R2.

Let (1, 1) W u

1 2 1 2{( ): 0 and 0},W x x x x  

(not closed under scalar multiplication)( 1) ( 1)(1, 1) ( 1, 1) W      u

⇒ W is not a subspace of R2

 Ex 5: (Determining subspaces of R3)

3

1 2 1 2

1 1 3 3 1 3

Which of the following subsets is a subspace of ?

( ) {( , , 1) , }

( ) {( , , ) , }

R

a W x x x x R

b W x x x x x x R

 

  

No (0  (0, 0, 0) W)

Yes
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Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector

space M2×2, with the standard operations of matrix addition and scalar multiplication

 Ex : (A subspace of M2×2)

 Ex : (The set of singular matrices is not a subspace of M2×2)

Let W be the set of singular matrices of order 2. Show that W is not a subspace of M2×2

with the standard operations

 Ex : (Determining subspaces of R2)

Which of the following two subsets is a subspace of R2?

(a) The set of points on the line given by x  2y  0.

(b) The set of points on the line given by x  2y  1.

Yes

No
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 Ex : (Subspaces of Functions)

Let W5 be the vector space of all functions defined on [0, 1]

W1  set of all polynomial defined on [0, 1]

W2  set of all functions differentiable on [0, 1]

W3  set of all functions continuous on [0, 1]

W4  set of all functions integrable on [0, 1]

Show that W1 ⸦ W2 ⸦ W3 ⸦ W4 ⸦ W5 and that Wi is a

subspace of Wj for i ≤ j

 Ex 10:  is a subspace of nP P
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 Theorem (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W
(denoted by V ∩W) is also a subspace of U.

The union of F and G (denoted by F ∪G) is not necessarily a

subspace of V

 Note:

 Ex 12: Let V  R2

2 2{( ) | 0}, {( ) | 0}F x y R x G x y R y     , ,

{ }

(0,1) ( ) (1, 0) ( ) (1,1)

F G

F G F G



    





0
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 Theorem : (The sum of two subspaces is a subspace)

If F and G are both subspaces of a vector space V, then the sum of F and G (denoted by F
 G), consisting of all the elements u  v |u ϵ F, v ϵ G. It is also a subspace of V.

 Ex 13: Let V  R2

2 2{( ) | 0}, {( ) | 0}F x y R x G x y R y     , , 2F G R 

3 3{( ) | 0} and {( ) | 0}F x y z R y z G x y z R x z       , , , ,

 Ex 14: Let V  R3

3{( ) | 0}F G x y z R z   , ,
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The most important subspaces are tied directly to a matrix A.

To solve  Ax = b.

If A is not invertible, the system is solvable for some b and not solvable for other b.

We want to describe the good right sides b-the vectors that can be written as A  times some 

vector x

Those b' s form the "column space" of A

Remember: Ax is a combination of the columns of A.
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Start with the columns of A and take all their linear combinations.

This produces the column space of A.

It is a vector subspace space of ℝ𝑚made up of column vectors

DEFINITION The column space consists of all linear combinations of the 

columns . The combinations are all possible vectors Ax. They fill the column 

space C(A).

Note: The system Ax = b is solvable if and only if b is in the column space of A.
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Spanning Sets and Linear Independence

 Linear combination:

A vector v in a vector space V is called a linear combination of the vectors u1, u2, …,

uk in V if v can be written in the form

1 2 kc c c   
1 2 kv u u u c1, c2, …, ck: scalars

 Ex 1: (Finding a linear combination)

(1, 2, 3), (0, 1, 2), ( 1, 0, 1)   
1 2 3

v v v

Prove (a) w  (1, 1, 1) is a linear combination of v1, v2, v3

(b) w  (1, 2, 2) is not a linear combination of v1, v2, v3



https://manara.edu.sy/Vector Spaces 34/45

Sol: (a) w  c1v1  c2v2  c3v3

(1, 1, 1) = c1(1, 2, 3) + c2(0, 1, 2) + c3(1, 0, 1)

= (c1 – c3, 2c1 + c2, 2c2 + c3)

1 3

1 2

1 2 3

1

2 1

3 2 1

c c

c c

c c c

 

  

  

1 0 1 1

2 1 0 1

3 2 1 1

 
 
 
 

1 0 1 1

0 1 2 1

0 0 0 0

 
 
 
 

Gauss-Jordan Elimination

1 2 31 , 1 2 ,c t c t c t       (this system has infinitely many solutions)

t  1 ⇒ w  2v1  3v2  v3



https://manara.edu.sy/Vector Spaces 35/45

(b) w  c1v1  c2v2  c3v3

1 0 1 1

2 1 0 2

3 2 1 2

 
  
 
 

1 0 1 1

0 1 2 4

0 0 0 7

 
 
 
 

Gauss-Jordan Elimination

⇒ this system has no solution (0 ≠ 7)

⇒ w ≠ c1v1  c2v2  c3v3

 The span of a set: span (S)

If S  {v1, v2,…, vk} is a set of vectors in a vector space V, then the span of S is the set

of all linear combinations of the vectors in S,

 1 2span( ) k iS c c c c K     
1 2 kv v v

(the set of all linear combinations of the vectors in S)
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 A spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors

in a given set S, then S is called a spanning set of the vector space.

 Notes:

 Notes:

(2) span( )S S

1 2

1 2 1 2

(3) ,

span( ) span( )

S S V

S S S S



  

span(S)  V
⇒ S spans (generates) V or V is spanned (generated) by S

S is spanning set of V

(1) span ∅ = 0
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 Ex 3: (A spanning set for R3)

The set S  {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3 because any vector u  (u1, u2, u3) in

R3 can be written as

u  u1(1, 0, 0)  u2(0, 1, 0)  u3(0, 0, 1)  (u1, u2, u3)

 Ex 2: (Examples of Spanning Sets)

The set S  (1, 0, 0) + (0, 1, 0) + (0, 0, 1) spans R3

The set S  {1, x, x2} spans P2

 Ex 4: (A spanning set for R3)

Sol:

Show that the set S1  {(1, 2, 3), (0, 1, 2), (2, 0, 1)} spans R3

We must determine whether an arbitrary vector u  (u1, u2, u3) in R3 can be as a

linear combination of v1, v2 and v3.
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1 3 1
3

1 2 3 1 2 2

1 2 3 3

2

2

3 2

c c u

R c c c c c u

c c c u

 

       

  
1 2 3

u u v v v

1 0 2

2 1 0 0

3 2 1

A



 

⇒ Ax  b has exactly one solution for every u ⇒ spans(S1 )  R3

 Ex 5: (A Set Does Not Span R3)

From Example 1: the set S2  {(1, 2, 3), (0, 1, 2), (1, 0, 1)} does not span R3 because

w  (1, 2, 2) is in R3 and cannot be expressed as a linear combination of the vectors in

S2.
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S1  {(1, 2, 3), (0, 1, 2), (2, 0, 1)}

The vectors in S1 do not lie in a common

plane

S2  {(1, 2, 3), (0, 1, 2), (1, 0, 1)}

The vectors in S2 lie in a common plane
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 Ex 6: (A Geometric View of Spanning in ℝ3)

v is a nonzero vector

span{v} is the line through the 

origin determined by v
span{v1, v2} is the plane through the

origin determined by v1 and v2


