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Chapter 2

Integration in the Complex Plan

1. Contour Integrals

2. Cauchy-Goursat Theorem

3. Independence of the Path

4. Cauchy's Integral Formulas
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1. Contour Integrals

A Definition

Suppose C is a curve parameterized by x = x(t), y = y(t), a  t  b, and A and B 

are the points (x(a), y(a)) and (x(b), y(b)), respectively. We say that:

(i) C is a smooth curve if x’ and y’ are continuous on the closed interval [a, b] 

and not simultaneously zero on the open interval (a, b).

(ii) C is piecewise smooth if it consists of a finite number of smooth curves 

C1, C2, ... , Cn joined end to end; that is, C = C1 ∪ C2 ∪ ... ∪ Cn.

(iii) C is a closed curve if A = B.

(iv) C is a simple closed curve if A = B and the curve does not cross itself.

(v) If C is not a closed curve, then the positive direction on C is the direction 

corresponding to increasing values of t.
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Smooth curve Piecewise smooth curve Closed but not simple Simple closed curve

A Definition

▪ Integral of a complex function f(z) that is defined along a curve C in the 

complex plane. Let C be defined by the parametric equations x = x(t), y = y(t), 
a  t  b, where t is a real parameter. 

▪ By using x(t) and y(t) as real and imaginary parts, we can also describe a 

curve C in the complex plane by means of a complex-valued function of a real 

variable t: z(t) = x(t) + iy(t), a  t  b.
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▪ For example, x = cos t, y = sin t, 0  t  2p, describes a unit circle centered at 

the origin. This circle can also be described by z(t) = cos t + i sin t, or even more 

compactly by z(t) = eit, 0  t  2p.

▪ In complex variables, a piecewise-smooth curve C is also called a contour or 

path. 

▪ An integral of f(z) on C is denoted by               or                if the contour C is 

closed; it is referred to as a contour integral or simply as a complex integral.

1. Let f(z) = u(x, y) + iv(x, y) be defined at all points on a smooth curve C 

defined by x = x(t), y = y(t), a  t  b.

2. Divide C into n subarcs according to the partition a = t0 < t1 < ... < tn = b of 

[a, b]. The corresponding points on the curve C are:

( )
C
f z dz ( )

C
f z dz
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k k kz x iy  = +

z0 = x0 + iy0 = x(t0) + iy(t0), z1 = x1 + iy1 = x(t1) + iy(t1), ..., zn = xn + iyn = x(tn) + 

iy(tn). Let Dzk = zk - zk-1, k = 1, 2, ..., n.

3. Let ||P|| be the norm of the partition, i.e., the maximum value of |Dzk|.

4. Choose a sample point                      on each subarc.

5. Form the sum:

( )
1

n

k k
k

f z z

=

D

▪ Definition: Let f be defined at points of a smooth curve C defined by x = x(t), 
y = y(t), a  t  b. The contour integral of f along C is

( ) lim ( )
0
1

n

k kC P
k

f z dz f z z

→
=

= D
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The limit exists if f is continuous at all points on C and C is either smooth or 

piecewise smooth.

▪ Theorem 1 (Evaluation of a Contour Integral): If f is continuous on a smooth 

curve C given by z(t) = x(t) + iy(t), a  t  b, then

( ) ( ( )) ( )
b

C a
f z dz f z t z t dt= 

▪ Example 1: Evaluating a Contour Integral

Evaluate           , where C is given by x(t) = 3t, y(t) = t2, -1  t  4
C
z dz

( )( )

( )

C
z dz t it it dt

t t dt i t dt i

-

- -

= - +

= + + = +

 

 

4 2

1

4 43 2

1 1

3 3 2

2 9 3 195 65
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▪ Example 2: Evaluating a Contour Integral

Evaluate             , where C is the circle x(t) = cos t, y(t) = sin t, 0  t  2p
C
dz
z
1

( )it it

C
dz e ie dt i dt i
z

p p
p-= = =  

2 2

0 0

1
2

Properties

▪ Theorem 2 (Properties of Contour Integrals): Suppose f and g are continuous 

in a domain D and C, C1 and C2 are smooth curves lying entirely in D. Then

( ) ( ) ( ) ,  a constant

( ) [ ( ) ( )] ( ) ( )

C C

C C C

i kf z dz k f z dz k

ii f z g z dz f z dz g z dz

=

+ = +

 

  
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( ) ( ) ( ) ( ) , 

( ) ( ) ( )  

C C C

C C

iii f z dz f z dz f z dz C C C

iv f z dz f z dz
-

= + = 

= -

  

 

1 2
1 2

where -C denotes the curve having the opposite orientation of C

▪ Note: Theorem 2 also hold when C is a piecewise-smooth curve in D.

▪ Example 3: Evaluating a Contour Integral

Evaluate                       , where C is the contour shown below( )
C
x iy dz+
2 2

( ) ( ) ( )
C C C
x iy dz x iy dz x iy dz+ = + + +  

1 2

2 2 2 2 2 2

The curve C1 is defined by x(t) = y(t) = t, 0  t  1

The curve C2 is defined by x(t) = 1, y(t) = t, 1  t  2
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( ) ( )( ) ( )
C
x iy dz t it i dt i t dt i+ = + + = + =  

1

1 12 2 2 2 2 2

0 0

2
1 1

3

( ) ( )
C
x iy dz it idt i+ = + = - + 

2

22 2 2

1

7
1

3

( )
C
x iy dz i i i+ = - + = - +
2 2 2 7 7 5

3 3 3 3

▪ Theorem 3 (A Bounding Theorem): If f is continuous on a smooth curve C and 

if |f (z)| < M for all z on C, then                          , where L is the length of C.( )
C
f z dz ML

▪ Example 4: A Bound for a Contour Integral

Find an upper bound for the absolute value of                  , where C is the circle 

|z| = 4.

z

C

e
dz

z + 1
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The length s of the circle of radius 4 is 8p. |z + 1|  |z| - 1 = 4 - 1 = 3,

z zz x z z

C

e ee e e e e e e
dz

z z z z

p
 = =     

+ - + +
4 4 48

1 1 3 3 3 1 3 1 3

2. Cauchy–Goursat Theorem

Simply and Multiply Connected Domains

▪ A domain D is said to be simply connected if every simple closed contour C 

lying entirely in D can be shrunk to a point without leaving D. 

▪ In other words, in a simply connected domain, every simple closed contour C 

lying entirely within it encloses only points of the domain D. 

▪ A simply connected domain has no “holes” in it.
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▪ The entire complex plane is an example of a simply connected domain. 

▪ A domain that is not simply connected is called a multiply connected domain; 

that is, a multiply connected domain has “holes” in it.

▪ We call a domain with one “hole” doubly connected, a domain with two 

“holes” triply connected, and so on.

Simply connected domain Multiply connected domain
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Cauchy’s Theorem

Suppose that a function f is analytic in a simply connected domain D and that f is 

continuous in D. Then for every simple closed contour C in D, ( )
C
f z dz = 0

▪ Theorem 4 (Cauchy–Goursat Theorem): Suppose a function f is analytic in a 

simply connected domain D. Then for every simple closed contour C in D,

( )
C
f z dz = 0

▪ Example 5: The functions zn with n a positive integer, sin z, cos z, ez, sinh z, and 

cosh z are analytic (they are entire functions), so for any closed contour C in 

the complex plane,

sin cos sinh coshn z

C C C C C C
z dz zdz zdz e dz zdz zdz= = = = = =      0
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▪ Example 6: Applying the Cauchy–Goursat Theorem

Evaluate             , where C is the ellipse
C
dz

z 2

1 ( )
( )

y
x

-
- + =

2
2 5
2 1

4

The rational function f(z) = 1/z2 is analytic everywhere except at z = 0. But 

z = 0 is not a point interior to or on the contour C. Thus,

C
dz

z
= 2

1
0

Cauchy–Goursat Theorem for Multiply Connected Domains

suppose D is a doubly connected domain and C and C1 are simple closed 

contours such that C1 surrounds the “hole” in the domain and is interior to C. 

Suppose, also, that f is analytic on each contour and at each point interior to C 

but exterior to C1.
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When we introduce the cut AB the region bounded by the curves is simply 

connected.

The integral from A to B has the opposite value of the integral from B to A, so

( ) ( ) ( ) ( ) ( ) ( )
C AB AB C C C
f z dz f z dz f z dz f z dz f z dz f z dz

-
+ + + =  =     

1 1

0

This result is sometimes called the principle of deformation of contours.
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▪ Example 7: Applying Deformation of Contours

Evaluate                 , where C is the outer contour shown
C

dz
z i-
1

We choose the more convenient circular contour C1. By 

taking r = 1, we are guaranteed that C1 lies within C. C1 

is the circle |z - i| = 1, which can be parameterized by 

x = cos t, y = 1 + sin t, or by z = i + eit, 0  t  2p.
it

itC C

ie
dz dz dt i

z i z i e

p
p= = =

- -  
1

2

0

1 1
2

▪ If z0 is any constant complex number interior to any simple closed contour C, 

then ,

,  an integer 1( )nC

i ndz
nz z

p =
=  - 


0

2 1
0
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Evaluate                           , where C is the circle |z - 2| = 2
C

z
dz

z z

+

+ -
 2

5 7

2 3

▪ Example 8: Applying Deformation of Contours

Since the denominator factors as z2 + 2z - 3 = (z - 1)(z + 3), the integrand 

fails to be analytic at z = 1 and z = -3. Only z = 1 lies within the contour C, 

which is a circle centered at z = 2 of radius r = 2.

C C C

z z dz dz
dz

z z z zz z z z

+ +
= +  = +

- + - ++ - + -
  2 2

5 7 3 2 5 7
3 2

1 3 1 32 3 2 3

( ) ( )
C

z
dz i i

z z
p p

+
= + =

+ -
 2

5 7
3 2 2 0 6

2 3
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▪ Theorem 5 (Cauchy–Goursat Theorem for Multiply Connected Domains): 

Suppose C, C1, ..., Cn are simple closed curves with a positive orientation 

such that C1, C2, ..., Cn are interior to C but the regions interior to each Ck, k = 

1, 2, ..., n, have no points in common. If f is analytic on each contour and at 

each point interior to C but exterior to all the Ck, k = 1, 2, ..., n, then

( ) ( )
k

n

C C
k

f z dz f z dz
=

=  
1

For example: triply connected domain D,

( ) ( ) ( )
C C C
f z dz f z dz f z dz= +  

1 2

▪ Note: Cauchy–Goursat theorem is valid for any closed 

contour C in a simply connected domain D.
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▪ Example 9: Applying Cauchy–Goursat Theorem for triply Connected domain

Evaluate                , where C is the circle |z| = 3
C

dz

z +
 2 1

z2 + 1 = (z - i)(z + i), the integrand fails to be analytic at z = i and z = -i. 
Both of these points lie within the contour C.

   ( ) ( ) ( ) ( )
C

dz
i i

i iz
p p p p= - + - = - =

+
 2

1 1
2 0 0 2 0

2 21

/ /

C C

i i dz
dz

z i z i i z i z iz z

 
= -  = - - + - ++ +  

 2 2

1 1 2 1 2 1 1 1

21 1

C C C

dz
dz dz

i z i z i i z i z iz

   
= - + -   - + - ++    

  
1 2

2

1 1 1 1 1 1

2 21
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3. Independence of the Path

▪ Definition: Let z0 and z1 be points in a domain D. A contour integral is 

said to be independent of the path if its value is the same for all contours C in 

D with an initial point z0 and a terminal point z1.

( )
C
f z dz

Suppose, that C and C1 are two contours in a simply connected 

domain D, both with initial point z0 and terminal point z1. Note 

that C and -C1 form a closed contour. Thus, if f is analytic in D, 

it follows from the Cauchy–Goursat theorem that

( ) ( ) ( ) ( )
C C C C
f z dz f z dz f z dz f z dz

-
+ =  =   

1 1

0

▪ Theorem 6 (Analyticity Implies Path Independence): If f is an analytic function 

in a simply connected domain D, then                is independent of the path C.( )
C
f z dz
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▪ Example 10: Choosing a Different Path

Evaluate         , where C is the contour with initial point 

z = -1 and terminal point z = 1 + i shown below
C
zdz 2

The function f(z) = 2z is entire, we can replace the path C 

C1 joining z = -1 and z = -1 + i. In particular, by choosing

C1 to be the straight line segment x = -1, y = t, 0  t  1. z = -1 + it 

( )
C
zdz it idt i dt tdt i= - + = - - = - -   

1 1 1

0 0 0
2 2 1 2 2 1 2

▪ Definition: Suppose f is continuous in a domain D. If there exists a function F 

such that F’(z) = f(z) for each z in D, then F is called an antiderivative of f.

For example, the function F(z) = -cos z is an antiderivative of f (z) = sin z.
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Antiderivative, or indefinite integral, of a function f(z) is written

                     

where F’(z) = f(z) and C is some complex constant.

( ) ( )f z dz F z C= +

▪ Theorem 7 (Fundamental Theorem for Contour Integrals): Suppose f is 

continuous in a domain D and F is an antiderivative of f in D. Then for any 

contour C in D with initial point z0 and terminal point z1,

( ) ( ) ( )
C
f z dz F z F z= - 1 0

▪ Example 11: Using an Antiderivative
ii

C
zdz zdz z i

- +- +

- -
= = = - -
 
11 2

1 1
2 2 1 2
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▪ Example 12: Using an Antiderivative

cos cos sin sin ( )
i i

C
zdz zdz z i

+ +
= = = + 

2 2

00
2

Evaluate             , where C is any contour with initial point z = 0 and terminal 

point z = 2 + i.

cos 
C

zdz

▪ If a continuous function f has an antiderivative F in D, then         is 

independent of the path.

( )
C
f z dz

▪ If f is continuous and                is independent of the path in a domain D, then f 

has an antiderivative everywhere in D.

( )
C
f z dz

▪ Theorem 8 (Existence of an Antiderivative): If f is analytic in a simply 

connected domain D, then f has an antiderivative in D; that is, there exists a 

function F such that F’(z) = f(z) for all z in D.
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▪ Example 13: Using the Logarithmic Function

Evaluate         , where C is the contour shown below
C

dz

z

Suppose that D is the simply connected domain defined by x = 

Re(z) > 0, y = Im(z) > 0. In this case, Log z is an antiderivative 

of 1/z, since both these functions are analytic in D.

▪ Note: under some circumstances Log z is an antiderivative of 1/z. For example, 

suppose D is the entire complex plane without the origin. The function 1/z is 

analytic in this multiply connected domain. 

( / )
C
z dz ip=  1 2 0▪ If C is any simple closed contour containing origin,                             . In this 

case, Log z is not an antiderivative of 1/z in D, since Log z is not analytic in D.
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Log Log Log Ln Ln Ln 
i i

C

dz
dz z i i i

z z

p p
= = = - = + - = + 

2 2

33

1 2
2 2 2 3

2 3 2

4. Cauchy’s Integral Formulas

▪ The value of an analytic function f at any point z0 in a simply connected domain 

can be represented by a contour integral.

▪ An analytic function f in a simply connected domain possesses derivatives of 

all orders.

▪ Theorem 9 (Cauchy’s Integral Formula): Let f be analytic in a simply connected 

domain D, and let C be a simple closed contour lying entirely within D. If z0 is 

any point within C, then ( )
( )

C

f z
f z dz

i z zp
=

-0
0

1

2
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▪ Example 14: Using Cauchy’s Integral Formula

Evaluate                           , where C is the circle |z| = 2
C

z z
dz

z i

- +

+
2 4 4

f(z) = z2 - 4z + 4 and z0 = -i as a point within the circle C. f is analytic at all 

points within and on the contour C.

( ) (3 ) ( )
C

z z
dz if i i i i

z i
p p p

- +
= - = + = - +

+
2 4 4

2 2 4 2 4 3

▪ Example 15: Using Cauchy’s Integral Formula

C

z
dz

z +
 2 9

Evaluate                    , where C is the circle |z - 2i| = 4

/( )z z z i

z iz

+
=

-+2
3

39
z0 = 3i is the only point within the circle C. 
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f(z) = z/(z - 3i). This function is analytic at all points within and on the 

contour C.
( )

C

z i
dz if i i i

iz
p p p= = =

+
 2

3
2 3 2

69

▪ Theorem 10 (Cauchy’s Integral Formula for Derivatives): Let f be analytic in a 

simply connected domain D, and let C be a simple closed contour lying entirely 

within D. If z0 is any point within C, then

( ) ! ( )
( )

( )

n
nC

n f z
f z dz

i z zp +
=

-
0 1

02

▪ Example 16: Using Cauchy’s Integral Formula for Derivatives

C

z
dz

z z

+

+
 4 3

1

4
Evaluate                       , where C is the circle |z| = 1
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The integrand is not analytic at z = 0 and z = -4, but only z = 0 lies within the 

closed contour.

▪ Example 17: Using Cauchy’s Integral Formula for Derivatives

( )C

z
dz

z z i

+

-


3

2

3
Evaluate                       , where C is the contour shown below

( )/( )
( )

!C

z z z z i
dz f i

z z z z z

p p+ + + +
=  = =

+ +
4 3 3 4 3

1 1 4 1 2 3
0

2 324 4

C is not a simple closed contour, we can think of it as the 

union of two simple closed contours C1 and C2

( ) ( ) ( )C C C

z z z
dz dz dz

z z i z z i z z i

+ + +
= +

- - -
  

1 2

3 3 3

2 2 2

3 3 3
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( )

( ) ( )C C C

z z
z z i zdz dz dz I I

zz z i z i

+ +
+ -

= - + = - +
- -

  
1 2

3 3

3 2

1 22 2

3 3
3

( )
( )

C

z

z i
I dz if i

z
p p

+

-
= = = -

1

3

2

1

3

2 0 6

( ) ( ) ( )
!( )C

z
izI dz f i i i i

z i

p
p p

+

= = = + = - +
-


2

3

2 2

3
2

2 3 2 2 2 3
1

( ) ( )
( )C

z
dz I I i i i

z z i
p p p

+
= - + = + - + = - +

-


3

1 22

3
6 2 2 3 4 1 3
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