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Extreme Values of Functions on Closed Intervals

Y
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flx) = fle)

forall xin D

for all xin D.

DEFINITIONS Let f be a function with domain D. Then f has an absolute
maximum value on D at a point ¢ if

flx) = flc)

and an absolute minimum value on D at e if
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Extreme Values of Functions on Closed Intervals 6 J_LLajl

DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(¢) for all x € D lying in some open interval containing c.

A function f has a local minimum value at a point ¢ within its domain D if

f(x) = f(c) for all x e D lying in some open interval containing .

Absolute maximum
No greater value of f anywhere.

Loral maximum Also a local maximum.

No greater value of
J nearby.

Local minimum
Mo smaller value

Absolute minimum
Mo smaller value of
f anywhere. Alsoa |

.. |
local minimum. |
1

| Local minimum
I Mo smaller value of
|foearby. |
L

L Rl e L L

i & i
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Extreme Values of Functions on Closed Intervals &)lial

DEFINITION An interior point of the domain of a function f where f' is zero
or undefined is a critical point of f.

Finding the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Find all critical points of f on the interval.

2. Evaluate f at all eritical points and endpoints. L
3. Take the largest and smallest of these values.

https://manara.edu.sy/
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Extreme Values of Functions on Closed Intervals -::l ) Lx_a.]l

EXAMPLE 2 Find the absolute maximum and minimum values of f(x) = x° on
[—2,1].

absolute maximum value of 4 at x = -2 absolute minimum value of 0 at x = 0.

EXAMPLE 4 Find the absolute maximum and minimum values of f(x) = x** on
the interval [—2,3].

¥
t y=x¥ 2=y=13
2 _ 2
fla) = 32717 = =5
3 3 "-../(_; Absolute maximum;
Local also a local maximum
maximum 2
Critical point value: f(y =0
Endpoint values: f(=2) = (-2)¥2 = V4

' 1 - X

1 2 3
Absolute minimum:
also a local mimmum

f3) = 3% = V. e
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Exercises ]
@® find the absolute maximum and minimum values of each function on the given interval.
fx)=4—x -2=x=1 F(x):—%, 0S5=x=2
X
f(6) =tanh, T <p== fOy=|t=5], 4=t=7

3 -

f(?) _ .3 and f(%) —1 no critical

f(M=2 fG)=0.

@ find the critical points and domain endpoints for each function. Then find the value

of the function at each of these points and identify extreme values (absolute and local).

y:xziq(xz—4) y={4_2x, .IEI

crit.pt. | derivative | extremum | value x+ 1 x>l

x=-1 0 ummum |- -3 crit.pt. | derivative | extremum | value
- undefined | local max 0 ..

¥=0 x=1 | undefined | minimum | 2

x=1 0 minimum 3
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Exercises

@® Suppose that at any given time ¢ (in seconds) the current i (in amperes) in an alternating

current circuitis i = 2cost + 2 sin t. What is the peak current for this circuit
(largest magnitude)?

the peak current is 272

https://manara.edu.sy/



>y

First Dernvative Test for Local Extrema aeola
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Absolute max
S undefined
Local max
fr=0 No extremum

f=0

Mo extremum

f=0

=0

Absolute min

|
(e} [}

]

ot

3

£

-
rl—————

First Denvative Test for Local Extrema

Suppose that ¢ is a critical point of a continnous function f, and that f is differ-
entiable at every point in some interval containing ¢ except possibly at ¢ itself.
Moving across this interval from left to right,

1. if ' changes from negative to positive at ¢, then f has a local minimum at ¢;

2. if f' changes from positive to negative at ¢, then f has a local maximum at ¢;

3. if f' does not change sign at ¢ (that 1s, f' is positive on both sides of ¢ or nega-
tive on both sides), then f has no local extremum at c.

https://manara.edu.sy/
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EXAMPLE 2 Find the critical points of
fx) = xMP(x — 4) = 2 — 4113,

Identify the open intervals on which f is increasing and decreasing. Find the function’s
local and absolute extreme values.

, d 4 4 Hpn_ 4 2, _dx— D
f(x) = %‘:ﬂﬁ — 4x1/3) = gxlﬁ — 3x 2/3 — : / x—1)= TE
The critical points x=0and x =1
Interval x<0 D<x<<1 x> 1
Sign of f’ — — +
Behavior of f decreasing decreasing increasing
I * ) 4 i > X
—1 0 | 2

y =2 -4

(1. —3)

https://manara.edu.sy/
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Exercises

@® a. Find the open intervals on which the function is increasing and decreasing.

b. Identify the function’s local and absolute extreme values, if any, saying where they occur.

2_ !
fo =X "3 %2 fl=ttt|——= ) (=== |+++
x—2 1 2 3
IS r
x) = f =+++|+++
Jx) 3x* + 1 0

@® Determine the values of constants a and b so that f(x) = ax? + bx

has an absolute maximum at the point (1, 2). a

2,b=4

https://manara.edu.sy/
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DEFINITION The graph of a differentiable function y = f(x) is

(a) concave up on an open interval [ if ' is increasing on [; v
(b) concave down on an open interval [ if f' is decreasing on L. 3t y=ot =3t 42
Concave down
+ + I
The Second Derivative Test for Concavity , . )

Let vy = f(x) be twice-differentiable on an interval I.

= Point of
inflection

1. If f* = 0 on [, the graph of f over I is concave up. ~2

Concave up

2. If " << 0 on I, the graph of f over I is concave down.

DEFINITION A point (¢, f(c)) where the graph of a function has a tangent line
and where the concavity changes is a point of inflection.

https://manara.edu.sy/ =
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Second Derivative Test for Local Extrema 8Li_aJl

THEOREM 5—Second Derivative Test for Local Extrema
Suppose f" is continuous on an open interval that contains x = ¢.

1. If f'(¢) = 0 and f"(¢) < 0, then f has a local maximum at x = c.
2. If f'(¢) = 0and f"(c) = 0, then f has a local minimum at x = c.

3. If f'(¢) = 0 and f"(c) = 0, then the test fails. The function f may have a local
maximum, a local minimum, or neither.

ff=0f"=0 f=0Ff"=0
= local max == local min

https://manara.edu.sy/
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Exercises &)Ll
@ identify the coordinates of any local and absolute extreme points and inflection points.
y=x+sinx, 0=x<=2mw x=0 x=2x X=7
minimum maximum inflection
y =2 —x%) x=0 =42 x=+1
maxinum minima inflection
(x2 _2x,x <0
y = |x? — 2x| =1 x=0and x=2. X X, X
maximum minima y=|x2—2x|=<2x—x2,0£x£2,
- - - 2
no points of inflection x~—-2x,x>2

@® Find the values of constants a, b, and ¢ so that the graph of y = ax® + bx* + cxhasa
local maximum at x = 3, local minimum at x = —1, and inflection point at (1, 11).

a=-1.b=3, andc =9

https://manara.edu.sy/
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Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What 1s given?
What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

d. Write an equation for the unknown guantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and
second derivatives to identify and classify the function’s critical points.

https://manara.edu.sy/
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Applied Optimization deoln
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EXAMPLE 1 An open-top box is to be made by cutting small congruent squares

from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large
should the squares cut from the corners be to make the box hold as much as possible?

V =hlw
V =x(12-2x)  0<x <6
dv Critical point value: V(2) = 128

d—X =12 (2 —X )(6 —X ) Endpoint values: V(o) = 0, Vi6) = 0.

The maximum volume is 128 in’. The cutout squares should be 2 in. on a side.

https://manara.edu.sy/
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| .
EXAMPLE 2 You have been asked to design a one-liter can shaped like a right circu- e N
lar cylinder (Figure 4.38). What dimensions will use the least material? - kD
A = 2ar* + 2mrh !
circular cylindrical
ends wall - -
2 o : 1000 W v
ar’h = 1000. Lliter = 1000 e’ puly  h = _ -
ar’ A
2000 dA 2000 |
A=27r°4+—— _ — =4nr ——;
r dr r Short and
wide can
500 d A 4000
r=3——=542 d2=47z+ . >0 ,rén
T r r )
h =23 500 absolute minimum i .
"\ r=542cmand h = 10.84 cm. 0 /300

https://manara.edu.sy/ —
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Exercises 5o

@® Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

V=%;'z'r2f: F=x=49-7 h=y+3 S’ZTH

® A piece of cardboard measures 10 in. by 15 in. Two equal squares
are removed from the corners of a 10-in. side as shown in the figure.
Two equal rectangles are removed from the other corners so that the
tabs can be folded to form a rectangular box with lid.

. pe— X fe— |

a. Write a formula V(x) for the volume of the box. T 7 T

X X

. : x ¥
find the maximum volume and the value of x that gives it. | L

|
10" | Base | | Lid

V(x) = 202729 5 0, 2x <10, and 2x <15 i )

2 T T ' T

interval (0, 5) V1 ¥
x~1.96 0orx=~6.37 =X =X

< 15" -

https://manara.edu.sy/
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Exercises 8ol
@® a. A rectangular sheet of perimeter 36 cm and dimensions x cm Circumference = x

by y cm is to be rolled into a cylinder as shown in part (a) of
the figure. What values of x and y give the largest volume?

x=12. y=6 V(x) z%. v

X
b. The same sheet i1s to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of the
figure. What values of x and y give the largest volume?

V(x)=rx*(18-x) x=12. y=6

(b)

https://manara.edu.sy/
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Newton’s Method 8)liaJl

Newton’s Method

1. Guess a first approximation to a solution of the equation f(x) = 0. A graph
of y = f(x) may help.

2. Use the first approximation to get a second, the second to get a third, and so
on, using the formula

fx,)
F0)

if f'(x,) # 0. (1)

Xp+1 = X —

y = f(x)

Point: (x,, (x,))
Slope: f'(x,,)
Tangent line equation:

¥~ fx) = Flagx — x,)

(X“,.f[.l'”}) Tﬁ]‘lgﬁl'll line
I (graph of
} linearization
i of fat x,)
1
Root sought i
&
/) N
_ fix,)
Apt1 =g~ f"(x )
¥
y = flx)
(xg. fixp))

(xp, SO )

(X2, flxo))

Root

) 11 RS-

https://manara.edu.sy/
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Newton’s Method 8)liaJl

EXAMPLE 1 Approximate the positive root of the equation
fix)y =x2—2=0.

X, 1 NIIII]hEI: ﬂif

X, g = E + F Error correct digits
=1 —0.41421 1
\/E —1.41421 x =15 0.08579 1
x, = 1.41667 0.00246 3
x; = 141422 0.00001 5

When Newton’s method converges to a root, it may not be the root you have in mind.

y=f)

Root
Starting  found

point \l_l \

X

Root sought |

Root Starting
sought  point

Root found

https://manara.edu.sy/
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Newton’s Method

EXAMPLE 2
the horizontal line y = 1.

Find the x-coordinate of the point where the curve y = x* — x crosses

[

6)jliaJl

3
X°=x-1=0
3
X, =X,-1
J— X -
n+1 n 2
33X —1
, S(x,)
n Xn f('rn:l f I:an Xp+1 = X — fr(x }
{ 1 —1 2 1.5
1 1.5 (0L.875 5.75 1.3478 26087
2 1.3478 26087 0.1006 82173 4.4499 (05482 1.3252 00399
3 1.3252 00399 0.0020 58362 42684 68292 1.3247 18174
4 1.3247 18174 (0.0000 00924 42646 34722 1.3247 17957
5 1.324°7 17957 —1.8672E-13 4.2646 32999 1.3247 17957

EBy(3,23)

_}'=.xj—_t—|

I5

10

E(2.12,6.35)
[ Root sought

_l"'l-
8+ 16212

https://manara.edu.sy/
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Exercises 6)Uial

® The curve y = tanx crosses the line y = 2x between x = 0 and x = 7/2.
Use Newton’s method to find where.

taﬂ(xn)_zxu ;
Xpal =X = . X =1= x =1.2920445 = x5 = x5 =1.165561185

secz(xﬁ)

https://manara.edu.sy/
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Indefinite Integrals deola
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DEFINITION The collection of all antiderivatives of f is called the indefinite
integral of f with respect to x, and is denoted by

f fix) dx.

The symbol f 15 an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.

[fdx =F(x) < F'(x)=f (x) jf (x)dx =F(x)+C
1) _[cf(x)dx =c_[f (x)dx ; c =constant

2) j[fl(x)+f2(x)—f3(x)]dx :jfl(x)dx +jf2(x)dx —jfg(x)dx

3) Hf (x)dx]:f(x)

https://manara.edu.sy/ 22
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TABLE 8.1 Basic integration formulas

L /k de =kx + C (any number k) 12. /tﬂnxdx = In|secx| + C
_er+1 .

2, [ x"dx = e C (n#—1) 13. [cotxdx =In|sinx| + C
n

3. %=ln|x|+c 14. /secxdx=ln|secx+mnx| + C

4. /Exf_{r=er+c 15. /{:scxdx=—ln|cscx+mtx|+l?

5. /a‘dx=l£+(: (@ >0, a71) 16. /sinhxdx=c05hx+£‘
na

https://manara.edu.sy/
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sinxdr = —cosx + C 17. /cnshxc.{r=sinhx+ C
ol .
cosxdx = sinx + C 18. /\/1—;12= sin '(JE:)+C
2 —
elx 1. _fx
sec’xde =tanx + C 19. S, a-atn |z + C
d 1
csc’xdv = —cotx + C 20. /ﬁ = H—sec" ;_,5: +C
secxtanxdr = secx + C 2. [ L = Gon !X +C {(a=0)
V& + 2 a
dx
esexcotxdr = —¢cscx + C 22. /ﬁ = msh"(%) +C (x>a>0)
—a

https://manara.edu.sy/
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Definite Integral deol o
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THEOREM 3—The Mean Value Theorem for Definite Integrals
If f is continuous on [a, #], then at some point ¢ in [a, 5],

&
fle) = ﬁf fx) dix.

THEOREM 4 —The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a, b], then F(x) = f: f(#) dt is continuous on [ a, b] and

difterentiable on (a, b) and its derivative is f(x):

Fo=4 f £0) dt = £(2).

(2)

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2
If f is continuous over [a, k] and F is any antiderivative of f on [a, 5], then

b
/ f(x) dx = F(b) — F(a).

https://manara.edu.sy/
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EXAMPLE 4  Find f dx
0 I — sinx

o o ‘.1'.'."4 - e .
B (™ 1 1+sinx, _ L +sinx o _ (™1 +sinx
o l—sinx f, 1—sinx |+sinx . 0o 1 — gin® x 0

w4
=/ (sec’ x + sec xtan x) dx
0

EXAMPLE 5 Evaluate

3 — Tx
_/ 3+ 2

[

6)liaJl

cost x

w4

= {tanx + sec:] = ‘-.,HE

0

3t — Tx 6 X
/ T dx—[(x—Eﬂ-SI_'_E)it—g 3x + 2In[3x + 2| + C.

https://manara.edu.sy/
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The Substitution Rule &)liall

THEOREM 6 —The Substitution Rule
If u = g(x) is a differentiable function whose range is an interval 7, and f is con-
tinuous on 1, then

f flg(x)) g'(x)dx = f f(u) du.

The Substitution Method to evaluate f flg(x)Ne'(x) dx
1. Substitute # = g(x) and du = (du/dx) dx = g'(x) dx to obtain __lr ) elu.

2. Integrate with respect to u.

3. Replace u by g(x).

https://manara.edu.sy/
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EXAMPLE 6

EXAMPLE 7

Evaluate

Evaluate

[

&)liaJl
3'1:+2dx
V] — 2 .
Mffx=—3w — 2+ 2sin'x+C
V1 — 2 ) )
/ dx
(1+ Vx)*
e 1+2Va
(1 + Vx)?

https://manara.edu.sy/
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[f ()" 0)dx =F ()g (<)~ [ "(x)g (x)dx

Find Ilnx dx

Solution

f(x)=Inx frx) =4
>_:> X -

0'(x)=1]  g(x)=x

jlnx dx =f (x)g(x)—jf '(x)g (x )dx =x Inx —jx Xidx

=X InXx —jdx =X Inx —x +C

https://manara.edu.sy/
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- f(x)=P(x
1- 1 :_[P(x)eaxdx = - (x) (X)
- g'(x)=e”
Find j(x2—4x)e2de
Solution _ f' —
f (x)=x°—4x (x)=2x -4
/ 2X - = 1 L
g'(x)=e | g(x)==¢"
2

j(x2—4x)e2de = f (x)g(x)—jf '(xd)g(x)dx:%(x2—4x)e“

https://manara.edu.sy/ =L
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f(x)=2x-4] T'x)=2
2X o= B
0= ] gp)=zer
[(2x —4)e™dx =f (x)g (x)—[F "(x)g (x ax
1

1 1
== (2x —4)e™ —|edx ==(2x -4 —=e* +C
- (2x — 4™ - | (2x — 4™ =2

https://manara.edu.sy/
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s F0)=PX)
g'(x ) =cosax

2- | :jP(x)cosaxdx or | =IP(X)Sin“XdX = ] or

"(X) =sIn aX
Find jxsiandx - J ( )

Solution y
— ) f'(x)=1
f’ (x) X N (X_)1 ]
g'(x)=sin2x g(x)=—-cos2x

—_—

jx sin 2x dx =f (x)g(x)—jf '(x )g (x )dx
= ——X COS 2X +1j0032xdx _MEPS?x +—sin 238G
2 2 2 4

https://manara.edu.sy/ =
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6)jliaJl

3- | :_.‘e‘)‘X cosx dx or | :J‘eo‘X sin S x dx

Find | =_"eX sin xdx
Solution

| =J'eX sin xdx _

f (x)=sinx ,g'(x)=e

Xexsinx—jexcosxdx =

f (x)=cosx , g'(x)=e*

e’ sinx —(ex COS X +_[eX sinxdx) —e*sinx —e* cosXx — |
| J

!

— | :%(eX sinx —e* cosx )+C

https://manara.edu.sy/
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mt
jf (x)g'(x)dx =[f (x)g (x)]; jf (x)g (x )dx

Calculate _[ tan ! xdx

Solution ’ —
f (x)=tan"x

g'(x)=1"

f/(x) =

i 1+X°
90)=x

jtanlxdx = [f (x)g(x)];—jf '(x)g (x )dx

1
“[xtanix |- [ —dx =&
X -([x2+1 4

https://manara.edu.sy/
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X
I - 1dx
o X F t=x°+1 =0 = t=1
\dt:2xdx X =1 = t=2)
¢ X 151 1 2 1
| w—dx ==[=dt =Z[Int], ==[In2-In1]=ZIn2
XS +1 291

y=tan x

=Y

https://manara.edu.sy/
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