

Calculus 2

Dr. Yamar Hamwi

Al-Manara University

2023-2024

Calculus 2

Lecture 5

Infinite Series

Infinite Series

An *infinite series* is the sum of an infinite sequence of numbers

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$
 Infinite series

The sum of the first *n* terms

$$s_n = a_1 + a_2 + a_3 + \cdots + a_n$$

 a_1, a_2, \dots are terms of the series.

 a_n is the <u>nth term</u>.

Infinite Series

To find the sum of an infinite series, consider the sequence of partial sums listed below.

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$S_{4} = a_{1} + a_{2} + a_{3} + a_{4}$$

$$S_{5} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + \cdots + a_{n}$$

If S_n has a limit as $n \to \infty$, then the series converges, otherwise it <u>diverges</u>.

$$S_n = \sum_{k=1}^n a_k$$

nth partial sum

Infinite Series

The series in Example is a **telescoping series** of the form

The *n*th partial sum of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \cdots$$

is

$$S_n = 1 - \frac{1}{n+1}$$
.

Because the limit of S_n is 1, the series converges and its sum is 1.

The series

$$\sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + 1 + \cdots$$

diverges because $S_n = n$ and the sequence of partial sums diverges.

Telescoping Series

Telescoping Series:
$$\sum_{n=1}^{\infty} (b_n - b_{n+1})$$

$$S_n = b_1 - b_{n+1}$$

$$S = \sum_{n=1}^{\infty} (b_n - b_{n+1}) = b_1 - \lim_{n \to \infty} b_{n+1}$$

$$\sum_{n=0}^{\infty} (b_n - b_{n+1}) \quad \text{is convergent} \iff \{b_n\} \quad \text{is convergent}$$

Example:
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Telescoping Series

Example

Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$$
.

Solution

Using partial fractions, you can write

$$a_n = \frac{2}{4n^2 - 1} = \frac{2}{(2n - 1)(2n + 1)} = \frac{1}{2n - 1} - \frac{1}{2n + 1}.$$

From this telescoping form, you can see that the nth partial sum is

$$S_n = \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right) = 1 - \frac{1}{2n+1}.$$

So, the series converges and its sum is 1. That is,

$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{2n + 1} \right) = 1.$$

Geometric Series

In a geometric series, each term is found by multiplying the preceding term by the same number, r.

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

This converges to
$$\frac{a}{1-r}$$
 if $|r| < 1$, and diverges if $|r| \ge 1$.

$$-1 < r < 1$$
 is the interval of convergence.

Geometric Series

EXAMPLE 1 The geometric series with a = 1/9 and r = 1/3 is

$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots = \sum_{n=1}^{\infty} \frac{1}{9} \left(\frac{1}{3}\right)^{n-1} = \frac{1/9}{1 - (1/3)} = \frac{1}{6}.$$

EXAMPLE 2 The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

is a geometric series with a = 5 and r = -1/4. It converges to

$$\frac{a}{1-r} = \frac{5}{1+(1/4)} = 4.$$

Properties of Infinite Series

THEOREM Properties of Infinite Series

Let Σa_n and Σb_n be convergent series, and let A, B, and c be real numbers. If $\Sigma a_n = A$ and $\Sigma b_n = B$, then the following series converge to the indicated sums.

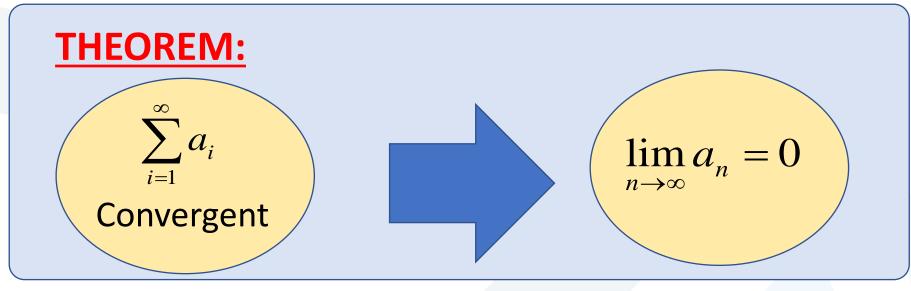
$$1. \sum_{n=1}^{\infty} ca_n = cA$$

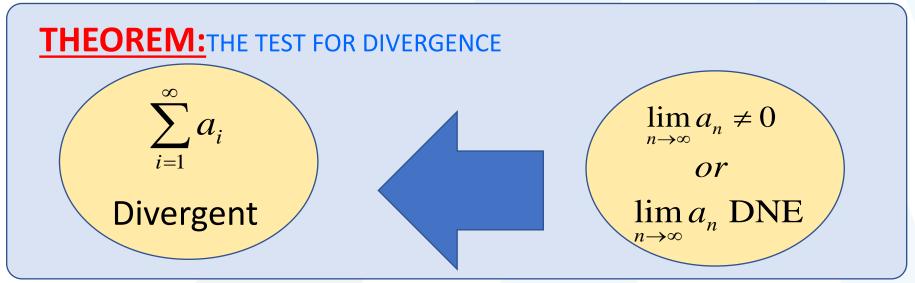
2.
$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B$$

3.
$$\sum_{n=1}^{\infty} (a_n - b_n) = A - B$$

THEOREM Limit of the nth Term of a Convergent Series

If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n\to\infty} a_n = 0$.





Example

- (a) $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \to \infty$.
- **(b)** $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \to 1$. $\lim_{n\to\infty} a_n \neq 0$
- (c) $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist.
- (d) $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ diverges because $\lim_{n\to\infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$.

For the series $\sum_{n=1}^{\infty} \frac{1}{n}$, you have

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

Because the limit of the *n*th term is 0, the *n*th-Term Test for Divergence does *not* apply and you can draw no conclusions about convergence or divergence.

$$S_{2} = 1 + \frac{1}{2}$$

$$S_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2}$$

$$S_{8} = 1 + \frac{1}{2} + \dots + \frac{1}{8} > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) = 1 + \frac{3}{2}$$

$$S_{16} = 1 + \frac{1}{2} + \dots + \frac{1}{16}$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) = 1 + \frac{4}{2},$$

$$S_{2^n} \geq 1 + \frac{n}{2}$$
.

 $\{S_{2^n}\}\$ diverges to $+\infty$. Therefore, since $\{S_n\}$ has a diverging

p-Series and Harmonic Series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$

is a *p*-series, where p is a positive constant. For p = 1, the series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdot \cdot \cdot$$

Harmonic series

p-series

is the harmonic series.

Convergence of p-Series

The *p*-series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$

converges for p > 1 and diverges for 0 .

Comparisons of Series

THEOREM Direct Comparison Test

Let $0 < a_n \le b_n$ for all n.

- **1.** If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Comparisons of Series

Example Determine the convergence or divergence

$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

Solution

$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$
.

Solution This series resembles

$$\sum_{n=1}^{\infty} \frac{1}{3^n}.$$
 Convergent geometric series

Term-by-term comparison yields

$$a_n = \frac{1}{2+3^n} < \frac{1}{3^n} = b_n, \quad n \ge 1.$$

So, by the Direct Comparison Test, the series converges.

Limit Comparison Test

THEOREM Limit Comparison Test

If $a_n > 0$, $b_n > 0$, and

$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$

where *L* is *finite and positive*, then

$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$

either both converge or both diverge.

Limit Comparison Test

Example

Given Series

$$\sum_{n=1}^{\infty} \frac{1}{3n^2 - 4n + 5} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n-2}} \qquad \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{n^2 - 10}{4n^5 + n^3}$$

Comparison Series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{n^2 - 10}{4n^5 + n^3} \qquad \qquad \sum_{n=1}^{\infty} \frac{n^2}{n^5} = \sum_{n=1}^{\infty} \frac{1}{n^3}$$

Conclusion

Both series converge.

Both series diverge.

Both series converge.

Limit Comparison Test

Example

Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} \frac{n2^n}{4n^3 + 1}.$$

Solution

$$\sum_{n=1}^{\infty} \frac{2^n}{n^2}.$$

Divergent series

Note that this series diverges by the *n*th-Term Test. From the limit

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{n2^n}{4n^3 + 1} \right) \left(\frac{n^2}{2^n} \right)$$
$$= \lim_{n \to \infty} \frac{1}{4 + (1/n^3)}$$
$$= \frac{1}{4}$$

you can conclude that the series diverges.

summary

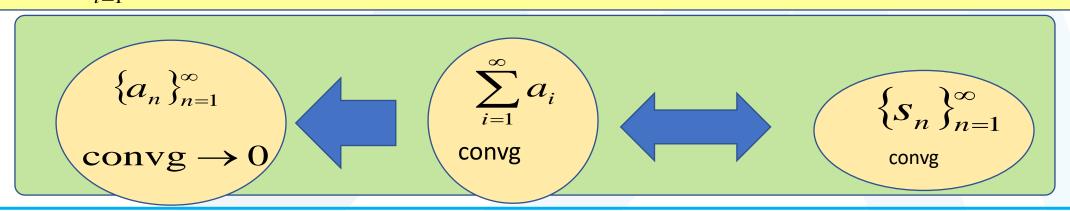
	Geometric	Telescoping	General
When convg	r < 1	$\{b_{n+1}\}convg$	$\{s_n\}$ convg
sum	$\frac{a}{1-r}$	$b_1 - \lim_{n \to \infty} b_{n+1}$	$\lim_{n\to\infty} s_n$
nth partial sum	$s_n = a \frac{1 - r^n}{1 - r}$	$S_n = b_1 - b_{n+1}$	$S_n = a_1 + \dots + a_n$ $a_n = S_n - S_{n-1}$

THEOREM:THE TEST FOR DIVERGENCE

 $\sum_{i=1}^{\infty} a_i$ Divergent

$$\lim_{n\to\infty} a_n \neq 0$$

 $\lim_{n\to\infty} a_n \neq 0 \quad or \quad \lim_{n\to\infty} a_n \text{ DNE}$



Thank you for your attention