Fxercises 4: Vector Spaces

CEDC102 : Linear Algebra and Matrix Theory

Manara University

2023-2024

Determine whether \boldsymbol{W} is a subspace of the vector space \boldsymbol{V}
(1) $W=\{(x, y): x=2 y\}, V=R^{2}$
W is nonempty and $W \subset R^{2}, W$ is closed under addition and scalar multiplication
$\Rightarrow W$ is a subspace of R^{2}
(2) $W=\{(x, 2 x, 3 x)$: x is a real number $\}, V=R^{3}$
W is nonempty and $W \subset R^{3}, W$ is closed under addition and scalar multiplication
$\Rightarrow W$ is a subspace of R^{3}
(3) $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0\right\} \quad W=\{\mathbf{0}\}, W$ is a subspace of R^{3}
(4) $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$
W is not closed under addition or scalar multiplication, so it is not a subspace of R^{3}. $(1,0,0) \in W$, and yet $2(1,0,0)=(2,0,0) \notin W$

Write each vector as a linear combination of the vectors in S (if possible)
(1) $S=\{(2,-1,3),(5,0,4)\}$
(a) $\boldsymbol{u}=(1,1,-1)$
(b) $\boldsymbol{v}=(8,-1 / 4,27 / 4)$
(a) $\boldsymbol{u}=(1,1,-1)=c_{1}(2,-1,3)+c_{2}(5,0,4)$

$$
2 c_{1}+5 c_{2}=1
$$

$$
-c_{1} \quad=1
$$

$$
3 c_{1}+4 c_{2}=-1
$$

This system has no solution. So, \boldsymbol{u} cannot be written as a linear combination of vectors in S
(b) $\boldsymbol{v}=(8,-1 / 4,27 / 4)=c_{1}(2,-1,3)+c_{2}(5,0,4)$

$$
\begin{aligned}
& 2 c_{1}+5 c_{2}=8 \\
& -c_{1}=-1 / 4 \\
& 3 c_{1}+4 c_{2}=27 / 4
\end{aligned}
$$

The solution to this system is $c_{1}=1 / 4$ and $c_{2}=3 / 2$. So, v can be written as a linear combination of vectors in S
(2) $S=\{(2,0,7),(2,4,5),(2,-12,13)\}$
(a) $\boldsymbol{u}=(-1,5,-6)$
(b) $\boldsymbol{v}=(-3,15,18)$
(a) $\boldsymbol{u}=(-1,5,-6)=c_{1}(2,0,7)+c_{2}(2,4,5)+c_{3}(2,-12,13)$

$$
\begin{aligned}
2 c_{1}+2 c_{2}+2 c_{3} & & =-1 \\
4 c_{2}-12 c_{3} & & =5 \\
7 c_{1}+5 c_{2}+13 c_{3} & & =-6
\end{aligned}
$$

One solution to this system is $c_{1}=-7 / 4, c_{2}=5 / 4$ and $c_{3}=0$. So, \boldsymbol{u} can be written as a linear combination of vectors in S
(b) $\boldsymbol{v}=(-3,15,18)=c_{1}(2,0,7)+c_{2}(2,4,5)+c_{3}(2,-12,13)$

$$
\begin{aligned}
2 c_{1}+2 c_{2}+2 c_{3} & =-3 \\
4 c_{2}-12 c_{3} & =15 \\
7 c_{1}+5 c_{2}+13 c_{3} & =18
\end{aligned}
$$

This system has no solution. So, \boldsymbol{v} cannot be written as a linear combination of vectors in S

Determine whether the set \boldsymbol{S} is linearly independent or linearly dependent
(1) $S=\{(-2,2),(3,5)\}$
$(-2,2)$ is not a scalar multiple of $(3,5)$. So the set S is linearly independent
(2) $S=\{(0,0),(1,-1)\}$
$\mathbf{0} \in S \Rightarrow S$ is linearly dependent
(3) $S=\{(3,-6),(-1,2)\}$
$(3,-6)=-3(-1,2) \Rightarrow S$ is linearly dependent
(4) $S=\{(1,1,1),(2,2,2),(3,3,3)\}$

These vectors are multiples of each other, the set S is linearly dependent
(5) $S=\{(-2,1,3),(2,9,-3),(2,3,-3)\}$
$c_{1}(-2,1,3)+c_{2}(2,9,-3)+c_{3}(2,3,-3)=\mathbf{0}=(0,0,0)$
$-2 c_{1}+2 c_{2}+2 c_{3}=0$
$c_{1}+9 c_{2}+3 c_{3}=0$
$3 c_{1}-3 c_{2}-3 c_{3}=0$
The system has many solutions. One solution is (3, $-2,5$), so S is linearly dependent

$$
\text { (6) } \begin{array}{ll}
S=\{(-4,-3,4),(1,-2,3),(6,0,0)\} \\
c_{1}(-4,-3,4)+c_{2}(1,-2,3)+c_{3}(6,0,0)=\mathbf{0}=(0,0,0) \\
-4 c_{1}+c_{2}+6 c_{3} & =0 \\
-3 c_{1}-2 c_{2} & =0 \\
4 c_{1}+3 c_{2} & =0
\end{array}
$$

This system has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. So S is linearly independent
(7) $S=\{(1,0,0),(0,4,0),(0,0,-6),(1,5,-3)\}$
$(1,-5,3)=(1,0,0)+5 / 4(0,4,0)+1 / 2(0,0,-6)$
The fourth vector is a linear combination of the first three. So S is linearly dependent

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} be three linearly independent vectors in a vector space \boldsymbol{V}. Is the set $\left\{\boldsymbol{v}_{1}\right.$ $\left.\mathbf{- 2} v_{2}, 2 v_{2}-\mathbf{3} v_{3}, \mathbf{3} v_{3}-v_{1}\right\}$ linearly dependent or linearly independent? Explain
To see if the given set is linearly independent, solve the equation

$$
\begin{aligned}
& c_{1}\left(\boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}\right)+c_{2}\left(2 \boldsymbol{v}_{2}-3 \boldsymbol{v}_{3}\right)+c_{3}\left(3 \boldsymbol{v}_{3}-\boldsymbol{v}_{1}\right)=\mathbf{0} \\
& \left(c_{1}-c_{3}\right) \boldsymbol{v}_{1}+\left(-2 c_{1}+2 c_{2}\right) \boldsymbol{v}_{2}+\left(-3 c_{2}+3 c_{3}\right) \boldsymbol{v}_{3}=\mathbf{0}
\end{aligned}
$$

$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} be three linearly independent vectors \Rightarrow

$$
\begin{aligned}
c_{1}-c_{3} & =0 \\
-2 c_{1}+2 c_{2} & =0 \\
-3 c_{2}+3 c_{3} & =0
\end{aligned}
$$

This system has infinitely many solutions, so $\left\{\boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}, 2 \boldsymbol{v}_{2}-3 \boldsymbol{v}_{3}, 3 \boldsymbol{v}_{3}-\boldsymbol{v}_{1}\right\}$ is linearly dependent

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} be three linearly independent vectors in a vector space \boldsymbol{V}. Is the set $\left\{\boldsymbol{v}_{1}\right.$ $+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \boldsymbol{v}_{3}+\boldsymbol{v}_{1}$ \} linearly dependent or linearly independent? Explain

To see if the given set is linearly independent, solve the equation

$$
\begin{aligned}
& c_{1}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+c_{2}\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+c_{3}\left(\boldsymbol{v}_{3}+\boldsymbol{v}_{1}\right)=\mathbf{0} \\
& \left(c_{1}+c_{3}\right) \boldsymbol{v}_{1}+\left(c_{1}+c_{2}\right) \boldsymbol{v}_{2}+\left(c_{2}+c_{3}\right) \boldsymbol{v}_{3}=\mathbf{0}
\end{aligned}
$$

$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} be three linearly independent vectors \Rightarrow

$$
\begin{aligned}
& c_{1} \quad+c_{3}=0 \\
& c_{1}+c_{2}=0 \\
& c_{2}+c_{3}=0
\end{aligned}
$$

This system has only the trivial solution, so $\left\{\boldsymbol{v}_{1}-2 \boldsymbol{v}_{2}, 2 \boldsymbol{v}_{2}-3 \boldsymbol{v}_{3}, 3 \boldsymbol{v}_{3}-\boldsymbol{v}_{1}\right\}$ is linearly dependent

Determine whether \boldsymbol{W} is a subspace of the vector space \boldsymbol{V}

1. $W=\{(x, y): x-y=1\}, V=R^{2}$
2. Which of the subsets of R^{3} is a subspace of R^{3} ?
(a) $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}$
(b) $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=1\right\}$

Write v as a linear combination of u_{1}, u_{2}, and u_{3}, if possible

1. $\boldsymbol{v}=(3,0,-6), \boldsymbol{u}_{1}=(1,-1,2), \boldsymbol{u}_{2}=(2,4,-2), \boldsymbol{u}_{3}=(1,2,-4)$
2. $\boldsymbol{v}=(4,4,5), \boldsymbol{u}_{1}=(1,2,3), \boldsymbol{u}_{2}=(-2,0,1), \boldsymbol{u}_{3}=(1,0,0)$

Determine whether the set \boldsymbol{S} is linearly independent or linearly dependent

1. $S=\{(1,-5,4),(11,6,-1),(2,3,5)\}$
2. $S=\{(4,0,1),(0,-3,2),(5,10,0)\}$
3. $S=\{(2,0,1),(2,-1,1),(4,2,0)\}$
4. $S=\{(1,0,0),(0,1,0),(0,0,1),(-1,2,-3)\}$
5. $S=\{(1,0,0),(0,1,0),(0,0,1),(2,-1,0)\}$
