

Exercises 5: Vector Spaces

CEDC102 : Linear Algebra and Matrix Theory

Manara University

2023-2024

https://manara.edu.sy/

{v₁, v₂} consists of exactly two linearly independent vectors, it is a basis for R²
 {v₁, v₂} consists of exactly two linearly independent vectors, it is a basis for R²

- 3. v_1 and v_2 are multiplies of each other, they do not form a basis for R^2
- 4. $\{v_1, v_2\}$ consists of exactly two linearly independent vectors, it is a basis for R^2

5. v₁ and v₂ are multiplies of each other, they do not form a basis for R²
6. {v₁, v₂} consists of exactly two linearly independent vectors, it is a basis for R²

Determine whether S is a basis for the given vector space

1 $S = \{(4, -3), (5, 2)\}$ for R^2

S consists of exactly two linearly independent vectors, it is a basis for R^2

2
$$S = \{(1, 2), (1, -1), (-1, 2)\}$$
 for R^2

S consists of more than two vectors, so S is linearly dependent, and it is not a basis for R^2

3 $S = \{(1, 5, 3), (0, 1, 2), (0, 0, 6)\}$ for R^3

To determine if the vectors in *S* are linearly independent, find the solution to $c_1(1, 5, 3) + c_2(0, 1, 2) + c_3(0, 0, 6) = (0, 0, 0)$

Which corresponds to the solution of

$$c_{1} = 0$$

$$5c_{1} + c_{2} = 0$$

$$3c_{1} + 2c_{2} + 6c_{3} = 0$$

This system has only the trivial solution. So, *S* consists of exactly three linearly independent vectors, and is, therefore, a basis for R^3

4
$$S = \{(2, 1, 0), (0, -1, 1)\}$$
 for R^3

S does not span R^3 (consists of less than three vectors), although it is linearly independent \Rightarrow *S* is not a basis for R^3

5
$$S = \{(0, 3, -2), (4, 0, 3), (-8, 15, -16)\}$$
 for R^3

To determine if the vectors in S are linearly independent, find the solution to

 $c_1(0, 3, -2) + c_2(4, 0, 3) + c_3(-8, 15, -16) = (0, 0, 0)$

which corresponds to the solution of

$$4c_2 - 8c_3 = 0$$

$$3c_1 + 15c_3 = 0$$

$$-2c_1 + 3c_2 - 16c_3 = 0$$

This system has nontrivial solutions (for instance, $c_1 = -5$, $c_2 = 2$ and $c_3 = 1$), so the vectors are linearly dependent, and *S* is not a basis for R^3

6 $S = \{(0, 0, 0), (1, 5, 6), (6, 2, 1)\}$ for R^3

This set contains the zero vector, and is, therefore, linearly dependent. So, S is not a basis for R^3

Determine whether the set, (a) is linearly independent, and (b) is a basis for R^3

(1)
$$S = \{(1, -5, 4), (11, 6, -1), (2, 3, 5)\}$$

(a) $c_1(1, -5, 4) + c_2(11, 6, -1) + c_3(2, 3, 5) = (0, 0, 0)$
 $c_1 + 11c_2 + 2c_3 = 0$
 $-5c_1 + 6c_2 + 3c_3 = 0$
 $4c_1 - c_2 + 5c_3 = 0$

This system has only the trivial solution. So, S is linearly independent.

(b) S consists of exactly three linearly independent vectors, and is, therefore, a basis for R^3

- 2 $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 2, -3)\}$
- (a) S is linearly dependent because the 4th vector is a linear combination of the first three (-1, 2, -3) = -1(1, 0, 0) + 2(0, 1, 0) 3(0, 0, 1)
- (b) S is not a basis because it is not linearly independent

Find the rank and nullity of the matrix A

$$A = \begin{bmatrix} 2 & -3 & -6 & -4 \\ 1 & 5 & -3 & 11 \\ 2 & 7 & -6 & 16 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & -1 & -18 \\ -1 & 3 & 10 \\ 1 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 & -6 & -4 \\ 1 & 5 & -3 & 11 \\ 2 & 7 & -6 & 16 \end{bmatrix}$$

$$G.J. Elimination$$

$$\begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rank(A) = 2,$$

$$nullity(A) = 4 - 2 = 2$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & -1 & -18 \\ -1 & 3 & 10 \\ 1 & 2 & 0 \end{bmatrix}$$
G.J. Elimination
$$\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
rank(A) = 2,
nullity(A) = 3 - 2 = 1

Given the coordinate matrix of x relative to a (nonstandard) basis B for R^n , find the coordinate matrix of x relative to the standard basis

(1)
$$B = \{(1, 1), (-1, 1)\}, [\mathbf{x}]_B = [3 \ 5]^T$$

 $\mathbf{x} = 3(1, 1) + 5(-1, 1) = (-2, 8)$
 $(-2, 8) = -2(1, 0) + 8(0, 1)$, the coordinate vector of \mathbf{x} relative to the standard basis is $[\mathbf{x}]_S = [-2 \ 8]^T$

2 $B = \{(1, 0, 0), (1, 1, 0), (0, 1, 1)\}, [\mathbf{x}]_B = [2 \ 0 \ -1]^T$ $\mathbf{x} = 2(1, 0, 0) + 0(1, 1, 0) - 1(0, 1, 1) = (2, -1, -1)$ (-2, -1, -1) = 2(1, 0, 0) - 1(0, 1, 0) - 1(0, 0, 1), the coordinate vector of \mathbf{x} relative to the standard basis is $[\mathbf{x}]_B = [2 \ -1 \ -1]^T$

Find the coordinate matrix of x in \mathbb{R}^n relative to the basis \mathbb{B}^n

1
$$B' = \{(5, 0), (0, -8)\}, x = (2, 2)$$

 $c_1(5, 0) + c_2(0, -8) = (2, 2)$

The resulting system of linear equations is

$$5c_1 = 2-8c_2 = 2$$

So $c_1 = 2/5$, $c_2 = -1/4 \Rightarrow [\mathbf{x}]_{B'} = [2/5 - 1/4]^T$

(2)
$$B = \{(1, 2, 3), (1, 2, 0), (0, -6, 2)\}, \mathbf{x} = (3, -3, 0)$$

 $c_1(1, 2, 3) + c_2(1, 2, 0) + c_3(0, -6, 2) = (3, -3, 0)$
 $c_1 + c_2 = 3$
 $2c_1 + 2c_2 - 6c_3 = -3$
 $3c_1 + 2c_3 = 0$
The solution is $c_1 = -1, c_2 = 4$ and $c_3 = 3/2 \Rightarrow [\mathbf{x}]_{B'} = [-1 \ 4 \ 3/2]^T$

Identify and sketch the graph of the conic section

(1)
$$x^2 - y^2 + 2x - 3 = 0$$

 $(x+1)^2 - 1 - y^2 - 3 = 0$
 $(x+1)^2 - y^2 = 4 \implies \frac{(x+1)^2}{2^2} - \frac{y^2}{2^2} = 1$

(2)
$$16x^2 + 25y^2 - 32x - 50y + 16 = 0$$

 $16(x^2 - 2x) + 25(y^2 - 2y) + 16 = 0$
 $16(x-1)^2 - 16 + 25(y-1)^2 - 25 + 16 = 0$

$$\frac{16(x-1)^2 + 25(y-1)^2}{25/16} = 25$$
$$\frac{(x-1)^2}{25/16} - (y-1)^2 = 1$$

This is the equation of an ellipse centered at (1, 1) and a = 5/4, b = 1

Perform a rotation of axes to eliminate the *xy*-term, and sketch the graph of the conic

$$7x^{2} + 6\sqrt{3}xy + 13y^{2} - 16 = 0$$

$$\cot 2\theta = \frac{a - c}{b} = \frac{7 - 13}{6\sqrt{3}} = \frac{-1}{\sqrt{3}} \Longrightarrow \theta = -\frac{\pi}{6}$$

$$\Rightarrow \sin \theta = -\frac{1}{2}, \cos \theta = \frac{\sqrt{3}}{2}$$

$$x = x' \cos \theta - y' \sin \theta = \frac{1}{2}(\sqrt{3}x' + y')$$

$$y = x' \sin \theta + y' \cos \theta = \frac{1}{2}(\sqrt{3}y' - x')$$

$$7x^{2} + 6\sqrt{3}xy + 13y^{2} - 16 = 0 \Longrightarrow 4(x')^{2} + 16(y')^{2} = 16$$

$$\frac{(x')^2}{4} + (y')^2 = 1$$

Ellipse centered at (0, 0) with the major axis along the x'-axis and a = 2, b = 1

https://manara.edu.sy/

Determine whether the set, (a) is linearly independent, and (b) is a basis for \mathbb{R}^3

```
1. S = \{(4, 0, 1), (0, -3, 2), (5, 10, 0)\}

2. S = \{(-1/2, 3/4, -1), (5, 2, 3), (-4, 6, -8)\}

3. S = \{(2, 0, 1), (2, -1, 1), (4, 2, 0)\}

4. S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, -1, 0)\}
```

Given the coordinate matrix of x relative to a (nonstandard) basis B for R^n , find the coordinate matrix of x relative to the standard basis

1. $B = \{(2, 4), (-1, 1)\}, [\mathbf{x}]_B = [4 -7]^T$ **2.** $B = \{(1, 0, 1), (0, 1, 0), (0, 1, 1)\}, [\mathbf{x}]_B = [4 \ 0 \ 2]^T$

Find the rank and nullity of the matrix $oldsymbol{A}$

$$\begin{array}{c} \textbf{1} \quad A = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 4 & -2 & 4 & -2 \\ -2 & 0 & 1 & 3 \end{bmatrix}$$

$$\begin{array}{c} \textbf{2} \quad A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 4 & 0 & 3 \\ -2 & 3 & 0 & 2 \\ 1 & 2 & 6 & 1 \end{bmatrix}$$

Find the coordinate matrix of x in \mathbb{R}^n relative to the basis \mathbb{B}^r

1.
$$B' = \{(2, 2), (0, -1)\}, \mathbf{x} = (-1, 2)$$

2. $B' = \{(1, 0, 0), (0, 1, 0), (1, 1, 1)\}, \mathbf{x} = (4, -2, 9)$

Identify and sketch the graph of the conic section

1.
$$x^2 + y^2 + 4x - 2y - 11 = 0$$

2. $9x^2 + 9y^2 + 18x - 18y + 14 = 0$

$$3.\ 2x^2 - 20x - y + 46 = 0$$

4. $4x^2 + y^2 + 32x + 4y + 63 = 0$

Perform a rotation of axes to eliminate the *xy*-term, and sketch the graph of the conic **1**. xy = 3

1. $x^{2} - y^{2} = 0$ **2.** $9x^{2} + 4xy + 9y^{2} - 20 = 0$ **3.** $x^{2} + 2xy + y^{2} + \sqrt{2}x - \sqrt{2}y = 0$