Exercises 5: Vector Spaces

CEDC102 : Linear Algebra and Matrix Theory

Manara University

2023-2024

Determine whether the set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is a basis for $\boldsymbol{R}^{\mathbf{2}}$

1. $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ consists of exactly two linearly independent vectors, it is a basis for R^{2}
2. $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ consists of exactly two linearly independent vectors, it is a basis for R^{2}

3. \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are multiplies of each other, they do not form a basis for R^{2}
4. $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ consists of exactly two linearly independent vectors, it is a basis for R^{2}

5. \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are multiplies of each other, they do not form a basis for R^{2}
6. $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ consists of exactly two linearly independent vectors, it is a basis for R^{2}

Determine whether \boldsymbol{S} is a basis for the given vector space
(1) $S=\{(4,-3),(5,2)\}$ for R^{2}
S consists of exactly two linearly independent vectors, it is a basis for R^{2}
(2) $S=\{(1,2),(1,-1),(-1,2)\}$ for R^{2}
S consists of more than two vectors, so S is linearly dependent, and it is not a basis for R^{2}
(3) $S=\{(1,5,3),(0,1,2),(0,0,6)\}$ for R^{3}

To determine if the vectors in S are linearly independent, find the solution to $c_{1}(1,5,3)+c_{2}(0,1,2)+c_{3}(0,0,6)=(0,0,0)$
Which corresponds to the solution of

$$
\begin{array}{ll}
c_{1} & =0 \\
5 c_{1}+c_{2} & =0 \\
3 c_{1}+2 c_{2}+6 c_{3}=0 &
\end{array}
$$

This system has only the trivial solution. So, S consists of exactly three linearly independent vectors, and is, therefore, a basis for R^{3}
(4) $S=\{(2,1,0),(0,-1,1)\}$ for R^{3}
S does not span R^{3} (consists of less than three vectors), although it is linearly independent $\Rightarrow S$ is not a basis for R^{3}
(5) $S=\{(0,3,-2),(4,0,3),(-8,15,-16)\}$ for R^{3}

To determine if the vectors in S are linearly independent, find the solution to
$c_{1}(0,3,-2)+c_{2}(4,0,3)+c_{3}(-8,15,-16)=(0,0,0)$
which corresponds to the solution of

$$
\begin{aligned}
4 c_{2}-8 c_{3} & =0 \\
3 c_{1}+\begin{array}{c}
15 c_{3}
\end{array} & =0 \\
-2 c_{1}+3 c_{2}-16 c_{3} & =0
\end{aligned}
$$

This system has nontrivial solutions (for instance, $c_{1}=-5, c_{2}=2$ and $c_{3}=1$), so the vectors are linearly dependent, and S is not a basis for R^{3}
(6) $S=\{(0,0,0),(1,5,6),(6,2,1)\}$ for R^{3}

This set contains the zero vector, and is, therefore, linearly dependent. So, S is not a basis for R^{3}

Determine whether the set, (a) is linearly independent, and (b) is a basis for \boldsymbol{R}^{3}
(1) $S=\{(1,-5,4),(11,6,-1),(2,3,5)\}$
(a) $c_{1}(1,-5,4)+c_{2}(11,6,-1)+c_{3}(2,3,5)=(0,0,0)$

$$
c_{1}+11 c_{2}+2 c_{3}=0
$$

$-5 c_{1}+6 c_{2}+3 c_{3}=0$

$$
4 c_{1}-c_{2}+5 c_{3} \quad=0
$$

This system has only the trivial solution. So, S is linearly independent.
(b) S consists of exactly three linearly independent vectors, and is, therefore, a basis for R^{3}
(2) $S=\{(1,0,0),(0,1,0),(0,0,1),(-1,2,-3)\}$
(a) S is linearly dependent because the 4 th vector is a linear combination of the first three $(-1,2,-3)=-1(1,0,0)+2(0,1,0)-3(0,0,1)$
(b) S is not a basis because it is not linearly independent

Find the rank and nullity of the matrix \boldsymbol{A}

$$
\begin{aligned}
& \text { (1) } A= {\left[\begin{array}{rrrr}
2 & -3 & -6 & -4 \\
1 & 5 & -3 & 11 \\
2 & 7 & -6 & 16
\end{array}\right] } \\
& {\left[\begin{array}{rrrr}
2 & -3 & -6 & -4 \\
1 & 5 & -3 & 11 \\
2 & 7 & -6 & 16
\end{array}\right] \xrightarrow{\text { (2) } A=\left[\begin{array}{rrr}
1 & 3 & 2 \\
4 & -1 & -18 \\
-1 & 3 & 10 \\
1 & 2 & 0
\end{array}\right]} \text { G.J. Elimination }\left[\begin{array}{rrrr}
1 & 0 & -3 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \operatorname{rank}(A)=2, } \\
& \operatorname{nullity}(A)=4-2=2
\end{aligned}
$$

$$
\left[\begin{array}{rrr}
1 & 3 & 2 \\
4 & -1 & -18 \\
-1 & 3 & 10 \\
1 & 2 & 0
\end{array}\right] \xrightarrow{\text { G.J. Elimination }}\left[\begin{array}{rrr}
1 & 0 & -4 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \operatorname{rank}(A)=2, \\
& \operatorname{nullity}(A)=3-2=1
\end{aligned}
$$

Given the coordinate matrix of \boldsymbol{x} relative to a (nonstandard) basis \boldsymbol{B} for \boldsymbol{R}^{n}, find the coordinate matrix of \boldsymbol{x} relative to the standard basis
(1) $B=\{(1,1),(-1,1)\},[x]_{B}=\left[\begin{array}{ll}3 & 5\end{array}\right]^{T}$

$$
\boldsymbol{x}=3(1,1)+5(-1,1)=(-2,8)
$$

$(-2,8)=-2(1,0)+8(0,1)$, the coordinate vector of \boldsymbol{x} relative to the standard basis is $\left[\begin{array}{l}x\end{array}\right]_{S}=\left[\begin{array}{ll}-2 & 8\end{array}\right]^{T}$
(2) $B=\{(1,0,0),(1,1,0),(0,1,1)\},[\boldsymbol{x}]_{B}=\left[\begin{array}{cc}2 & 0\end{array}-1\right]^{T}$

$$
\boldsymbol{x}=2(1,0,0)+0(1,1,0)-1(0,1,1)=(2,-1,-1)
$$

$(-2,-1,-1)=2(1,0,0)-1(0,1,0)-1(0,0,1)$, the coordinate vector of \boldsymbol{x} relative to the standard basis is $[\boldsymbol{x}]_{B}=\left[\begin{array}{lll}2 & -1 & -1\end{array}\right]^{T}$

Find the coordinate matrix of \boldsymbol{x} in \boldsymbol{R}^{n} relative to the basis \boldsymbol{B}^{\prime}
(1) $B^{\prime}=\{(5,0),(0,-8)\}, \boldsymbol{x}=(2,2)$

$$
c_{1}(5,0)+c_{2}(0,-8)=(2,2)
$$

The resulting system of linear equations is

$$
\begin{array}{rll}
5 c_{1} & & =2 \\
& -8 c_{2} & =2
\end{array}
$$

So $c_{1}=2 / 5, c_{2}=-1 / 4 \Rightarrow[\boldsymbol{x}]_{B},=[2 / 5-1 / 4]^{T}$
(2) $B^{\prime}=\{(1,2,3),(1,2,0),(0,-6,2)\}, \boldsymbol{x}=(3,-3,0)$

$$
c_{1}(1,2,3)+c_{2}(1,2,0)+c_{3}(0,-6,2)=(3,-3,0)
$$

$$
c_{1}+c_{2} \quad=3
$$

$$
2 c_{1}+2 c_{2}-6 c_{3}=-3
$$

$$
3 c_{1} \quad+2 c_{3}=0
$$

The solution is $c_{1}=-1, c_{2}=4$ and $c_{3}=3 / 2 \Rightarrow[\boldsymbol{x}]_{B},=\left[\begin{array}{lll}-1 & 4 & 3 / 2\end{array}\right]^{T}$
Identify and sketch the graph of the conic section
(1) $x^{2}-y^{2}+2 x-3=0$

$$
(x+1)^{2}-1-y^{2}-3=0
$$

$$
(x+1)^{2}-y^{2}=4 \Rightarrow \frac{(x+1)^{2}}{2^{2}}-\frac{y^{2}}{2^{2}}=1
$$

(2) $16 x^{2}+25 y^{2}-32 x-50 y+16=0$

$$
\begin{aligned}
& 16\left(x^{2}-2 x\right)+25\left(y^{2}-2 y\right)+16=0 \\
& 16(x-1)^{2}-16+25(y-1)^{2}-25+16=0
\end{aligned}
$$

$$
\begin{aligned}
& 16(x-1)^{2}+25(y-1)^{2}=25 \\
& \frac{(x-1)^{2}}{25 / 16}-(y-1)^{2}=1
\end{aligned}
$$

This is the equation of an ellipse centered at $(1,1)$ and $a=5 / 4, b=1$

Perform a rotation of axes to eliminate the $\boldsymbol{x y}$-term, and sketch the graph of the conic

$$
\begin{aligned}
& 7 x^{2}+6 \sqrt{3} x y+13 y^{2}-16=0 \\
& \cot 2 \theta=\frac{a-c}{b}=\frac{7-13}{6 \sqrt{3}}=\frac{-1}{\sqrt{3}} \Rightarrow \theta=-\frac{\pi}{6} \\
& \Rightarrow \sin \theta=-\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2} \\
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta=\frac{1}{2}\left(\sqrt{3} x^{\prime}+y^{\prime}\right) \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta=\frac{1}{2}\left(\sqrt{3} y^{\prime}-x^{\prime}\right) \\
& 7 x^{2}+6 \sqrt{3} x y+13 y^{2}-16=0 \Rightarrow 4\left(x^{\prime}\right)^{2}+16\left(y^{\prime}\right)^{2}=16
\end{aligned}
$$

$$
\frac{\left(x^{\prime}\right)^{2}}{4}+\left(y^{\prime}\right)^{2}=1
$$

Ellipse centered at $(0,0)$ with the major axis along the x^{\prime}-axis and $a=2, b=1$

Determine whether the set, (a) is linearly independent, and (b) is a basis for \boldsymbol{R}^{3}

1. $S=\{(4,0,1),(0,-3,2),(5,10,0)\}$
2. $S=\{(-1 / 2,3 / 4,-1),(5,2,3),(-4,6,-8)\}$
3. $S=\{(2,0,1),(2,-1,1),(4,2,0)\}$
4. $S=\{(1,0,0),(0,1,0),(0,0,1),(2,-1,0)\}$

Given the coordinate matrix of \boldsymbol{x} relative to a (nonstandard) basis \boldsymbol{B} for \boldsymbol{R}^{n}, find the coordinate matrix of \boldsymbol{x} relative to the standard basis

1. $B=\{(2,4),(-1,1)\},[\boldsymbol{x}]_{B}=[4-7]^{T}$
2. $B=\{(1,0,1),(0,1,0),(0,1,1)\},[\boldsymbol{x}]_{B}=\left[\begin{array}{lll}4 & 0 & 2\end{array}\right]^{T}$

Find the rank and nullity of the matrix \boldsymbol{A}

$$
\text { (1) } A=\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
4 & -2 & 4 & -2 \\
-2 & 0 & 1 & 3
\end{array}\right] \quad \text { (2) } A=\left[\begin{array}{rrrr}
1 & 2 & 1 & 2 \\
1 & 4 & 0 & 3 \\
-2 & 3 & 0 & 2 \\
1 & 2 & 6 & 1
\end{array}\right]
$$

Find the coordinate matrix of \boldsymbol{x} in \boldsymbol{R}^{n} relative to the basis \boldsymbol{B}^{\prime}

1. $B^{\prime}=\{(2,2),(0,-1)\}, \boldsymbol{x}=(-1,2)$
2. $B^{\prime}=\{(1,0,0),(0,1,0),(1,1,1)\}, \boldsymbol{x}=(4,-2,9)$

Identify and sketch the graph of the conic section

1. $x^{2}+y^{2}+4 x-2 y-11=0$
2. $9 x^{2}+9 y^{2}+18 x-18 y+14=0$
3. $2 x^{2}-20 x-y+46=0$
4. $4 x^{2}+y^{2}+32 x+4 y+63=0$

Perform a rotation of axes to eliminate the $\boldsymbol{x y}$-term, and sketch the graph of the conic

1. $x y=3$
2. $9 x^{2}+4 x y+9 y^{2}-20=0$
3. $x^{2}+2 x y+y^{2}+\sqrt{2} x-\sqrt{2} y=0$
