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Suspender Tower 8)lioJl
roadway e

Main Cable

— Anchor

Pier Main Span Stiffening Truss
Main components of a suspension bridge. The main cables and suspenders are axial members in rension; the
towers are primarily axial mgmhexsiin compression.

Trusses are made of straight members that A cylindrical pressure vessel A spherical pressure
are subjected to axial loads. with hemispherical end caps. vessel.
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The behaviour of Mechanical Systems under mechanical and thermal actions, is determined by ﬁ
1. The stresses, strains, & elongations of each individual components.

2. The stiffness (force—displacement) of an assembly of components.

Two Methods of Analysis

Force Method Displacement Method

1. Apply equilibrium conditions to loads, reactions, —> 1. Determine elongation of each memberin terms of the
internal forces —> stresses for a bar in tension: 0 = P /A. overall displacement
2. Calculate the strains from the stresses using Hooke's 2. Determine the strain in each componentin terms of its
law;eg,e = 0[E. elongatiom e.g., € = A/L.
3. Integrate the strain in each component to find its 3. Calculate the stresses from Hooke's Law; e.g, 0 = Ee.
elongation; e.g, A = €L.

4, Apply equilibrium condjtions to determine the internal
4. Elongations of members must be compatible, then —> & external forces; e.g, P = A.
displacement
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Types of Systems

Statically Determinate Systems
Reactions & internal forces can be calculated using only

statics: Equ///’br/'um equations.

T
.8 N H
TAYTC |_L 77777777777777777

Vo

2 Unknowns (7, &7 ) with 2 Eq. Eq;.
2F,=0: =T, cos8 + TC cosf =0
2F,=0:T,sinf + TCsind —W =0
=>T,=TC=T =W /2sinf

= 0,45 = 0, =W [2Asin0

=& = Ecg = W /2EAsSing

=045 = 0.5 =0 = WL/2EAsin0

—=v = §/sinf = WL/2EAsin%6

\
. . ojliall
Statically Indeterminate (Redundant) Systems -~
Statics alone (Equilibrium eqguations) is not enough to calculate

ducglg dygoell polinll

reactions and internal forces. fP ¥ Rigid Bar Py
c D T '
A ¢l o 4
B A l g
IR, s
R, R Ry Elastic Bars
| B
D
%I ,
A ey __ L ___. L e L >« L
U3 2u3 DR R g

3 Unknowns (R, R; & RD ) with 2 Eq. Egs. (impossible)
>F,=0:R,—RC—RD+P=0
>MA = 0: —R(L/3) — RD (2L/3) + PL = 0
Additional compatibility equation is needed.
6cc =v/3=RC EA6../H = EAv/3H
8pp = 2v/3=RD EAS,, /H = 2EAv/3H } =
3Eqs solution gives:_RA = 0.8P,RC = 0.6P,RD = 1.2P
—0p = 0.6P/A &0y, = 1.2P/A.
=8, = 0.6PH/EA ,a,, = 1.2PH/EA & v = 1.8PH/EA

R, = 2R,

o
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Strain-Elongation-Displacement of an axially loaded member.

The axial member /Jof length L, directed in x, ),z by the unit vector €
moves under loading to /J’ by two small displacement vectors 5, & 5J

getting a new length L'=L+A,, and a new direction, to determine 4, €y
we observe from the figure that: 1J3'=13 +J3"'—1l"'

using unit vector, the length, and two displacement vectors, the last equation is rewritten: g

157 = Le, + (0, — 5, ). squaring we get
L2 =(Le,)’ +2L (5, —6,)-6, +(5, —5,) =L*+2L(5, —,)-€, +(J, =6, )’
L?—L*=2L(5, =6,)-€, +(6, —6,)" =(L'+L)L'=L)=2L(5, —5,)-€, + (3, —9,)°
= (2L +6,)5, =2L (5, —=0,)-€, + (0, =5,)> =2LS, +52 =2L(5, —0,)-€,, + (0, —5,)°
Neglecting the two squared terms for small elongation & displacements, then:

) O f(ga ~6,)-€,

In the 2D case where 0, =U,€, +V €, O, =U € +V €, & € =C0oS0E +sIince,

0, =U, —u,)cosfd+ Vv, -v,)sing
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1. Axial Members — Force Method Statically Determinate Systems A &)liall
Examples 71— 6, are statically determinate systems, solved using the force method y

. P
Example 1 Uniform Bar in Tension ¢ ( s L LY (a |

Given: Load P is applied at the ends of a bar of constant cross-section Aand length £ (Fig). |<— —»l |<—5

The bar is made of an elastic material with modulus £

Required: Determine the stress O & strain € in the bar, and its elongation Aintermsof 2L A & E
Notes: (0, €, /1) response to action or excitation 7. (L, A & F) sys. parameters

Solution: Following the steps of the force method:
Step1. Equilibrium. The relationship between the applied force & the internal stress is: P=cA = o=F/A

Step 2. Flasticity (Stress—Strain relationship). From Hooke's Law, the strain is: c=o/F —  e=P/FA
Step 3. Strain—Flongation. The elongation as a function of strain is: A=el = A=PL/EA

The force method directly gives the flexibility fof the bar, where A=fP.Thus: =L /FA

Then the stiffness Kof the bar which is defined as: 7 =K4, is given: K=1/f=FA/L.

11/14/2023
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The previous solution is valid when P, A, and E are all constant over the entire length
of the bar L, resulting in a uniform strain.

To determine the elongation when £ A, and/or £ change over the length of the
bar, the bar must be broken up into shorter segments L;, where P, A, and E are all
constant. The total elongation is the sum of the elongations of each segment 4; -

P.L,
Am2A=2g
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Example 2. Rods Supporting Elevated Walkways A | ;ﬁ]ﬂ_j‘[
Given: A set of six stepped rods supports two elevated walkways overlooking a S
hotel atrium (Fig.). Bl H .
The upper segment of each rod, AB, has area A,, length L,, and modulus £,. c {m \

The lower segment, BC, has properties A,, L,, and E.. -
’

The load of the upper walkway is supported at joint B, the junction of the two bars. /T_: T

7

(c) T
The upper walkway applies a load to each rod of W, at point B, and the lower T T; T T
walkway applies a load to each rod of W, at point C. > | /f,f’ B Wy
Each rod is assumed to carry the same load (!!). | I/—|j|7—F 1w
. . P e e y
Required: Determine ! ' :
(a) the internal stresses in each segment of the rod AB and BC. (d) T (e) AT
(b) the total elongation A of stepped rod AC. A [E F.B.D,
Ly, A E,
Solution H Pas
F.B.D B t
Step 1. Equilibrium LA, Ez 0 & Fpe
Step 2. Elasticity (Stress—Strain relationship). c F.B.D,
Wy Wi

Step 3. Strain—elongation—displacement
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Continuously Varying Stress in Axial Members

The tapered column in Fig. supports a compressive load ~ While the force through the
column is constant, the cross-sectional area is not. Hence, stress and strain vary

continuously over the length of the member.
Example 3. Tapered Column under Compressive Load

Given: A tapered concrete column has a square cross-section that varies from side
a =125 mm at the top to side 2a =250 mm at the bottom (F~/g.). The total length of
the column is £L=1.20 m, and it carries a compressive load of F = 200 kN. The
modulus of concrete is £ =30 GPa. Neglect the weight of the concrete !. Since the
force is constant, & area increases from top (x=0) to bottom (x=L), the axial
compressive stress varies; it is maximum at the top and minimum at the bottom.

Required: Determine
(a) the variation of stress in the column o (x),
(b) the variation of strain £(x), and (c) the change in length of the column A.

Solution

Step 1. Equilibrium.

Step 2. Stress—Strain.

Step 3. Strain—Elongation—-Displacement,

b
® AX) AP(x)=-F

u(x)+du(x)

(d) Downward
Displacement

LA u(l)=0

Yx

/.)
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Example 4. Extraction of a Nail

Given: A nail is pulled out of a piece of wood (F/g.). The nail diameter is D = 2R, and its
embedded length is L. Force 7 applied to extract the nail is resisted by an interfacial shear
stress r acting between the nail surface and the wood; 7is assumed to be constant (F/g.). The
tip of the nail provides no resistance to pull-out. The nail begins to slide (pull-out) when the
sliding stress z.is reached (z.is the stress to overcome the nail-wood friction).

Required: Determine the change in length of the embedded part of the nail just before it starts to
slide, interms of 7., L, D, and E.

Solution:

Step 1. Equilibrium.
Step 2. Stress—Strain.

Step 3. Strain—Elongation—-Displacement.

(a)

r .
Radius, R
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Compatibility S)liall
Under load, the components of a system must deform and deflect in such a way that > ' >
the system remains intact. In other words, the members of an assembly are y
geometrically constrained to deform together. /4\ 0
This condition is called compatibility. Applying the concept of compatibility is a key #

. .. L
step when solving systems where several components are joined together, whether ' _
the systems are statically determinate or statically indeterminate. ‘[} |

Example 5. Hanging Lamp

Given: A lamp weighing W =60 N is supported by two wires, both of length L =1.5 m and Y sz N
diameter D =2.5 mm. The distance between the two cable mounts is s = 2.4 m so that point 74 Y T¢
Bis H=0.9 m below horizontal line AC. The wires are made of steel with modulus £ =207

GPa and yield strength S, =345 MPa. Assume the wire below point B is rigid and of sufficient ¢ W
strength.

Required: Determine

(a) the downward displacement of the lamp v (i.e., of point B) due to its own weight,
(b) the stiffness of the wire assembly in the vertical direction, K=W/v.

(c) the factor of safety against yielding.

10
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Example 6 .Truss Deflection

Given: Aluminum truss ABC is loaded at joint B by a point load of ~= 45 kN.
The cross-sectional areas of the bars are: A,;=325 mm? and Ag. =390 mm? .
The modulus of aluminum is £=70 GPa.

Required: Determine the horizontal and vertical displacements of joint B, u, and v.

11/14/2023 https://manara.edu.sy/ Strength of Materials - R&IS-Eng. - 2023-2024 - L4
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Statically Indeterminate (Redundant) Systems ﬁ

In the introductory example, it was noted that some systems cannot be solved by Statics alone; this is the case
when there are more unknowns than equilibrium equations. These systems are statically indeterminate or
redundant. When applying the force method, the idea of a redundant force must be introduced to complete
such a problem. Exs 7— 9, are applications of the force method to redundant systems.

Example 7. Two Parallel Bars Bar1 Bar2

Given: Bars 1 and 2 are each attached to a rigid base and a rigid boss (F~/g.). The T X
boss is constrained to move vertically only. The bars have lengths, cross-sectional p Ay Ay

areas, and moduli as shown in the diagram. Downward load Fis applied to the boss, L E, Ey I

which displaces (deflects) downward distance v. Assume the system remains elastic. l :
Required: For the particular case L, =2L,, A,=4A, and E, = E, = E, determine v

expressions for (a) the stresses in each bar, o; and ¢, and (b) the downward

deflection v of the rigid boss. Rigid Boss

Solution: ¢ T
Step 1. Equilibrium. kv
Step 2. Force—elongation.

Step 3. Compatibility

12
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Example 8. Two In-Line Bars Lo gars ﬁ
Given: Another redundant system consists of two in-line bars, 1 and 2, which are joined together '
as shown, fixed at the top and bottom (F~/g.). Load Wis applied at the junction of the bars. .
'V

Required: For the particular case L, =2L,, A, =4A,, & E, = E, = E, determine L, | 4 | Bar2
(a) the internal force and stress in each bar and E;
(b) the deflection v of the junction (where the load is applied). l

Solution: P, f w

Step 1. Equilibrium, =R 3

Steps 2 . The force — elongation,
Step 3. The compatibility
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Example 9. Rigid Bar Ty Rigid Bar f pv Gliall

C D
Given: Bar AB s rigid with length L, while bars C and D are elastic, both with A ‘i

modulus E, cross-sectional area A, and length H (Fig.). Force Pis applied at
point B which displaces upward by distance v.

Required: Determine the force in each bar, R and Ry, in terms of P, [ % >l £ sl 2 ]

fP
p C D

B
e weo ¥,
| ) B
%I ’
P o (N
w3  2u3

14
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2. Axial Members — Displacement Method ;ﬁmt

The displacement method is used here to solve four of the previous examples in Section 4.7, two statically
determinate and two statically indeterminate (redundant). A new example, with many redundant members,
is also solved.

From kinematic (displacement) relationships, the internal strains are first determined, which lead to the
stresses via Hooke’s Law, from which internal and external forces are determined using equilibrium. The
steps are as follows:

1. Determine the elongation of each member in terms of the overall displacement of the assembly; the
elongation of each member must be compatible with the elongations of the other members. If necessary use

o, =(U, —u,)cos@+ (v, —-v,)sinb

2. Determine the strain in each member in terms of its elongation; e.g., € = 0/L.

3. Calculate the stresses from the elastic law; e.g., 0 = E¢€.

4. Apply the conditions of equilibrium to determine the internal and applied forces;

15
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Example 10. Uniform Bar in Tension A 6 _|L1_.:._| !

Given: The bar in Example 4.1 elongates by 4 when axial force Pis P

applied at its ends. The bar has constant cross-sectional area Aand {—( Modulus, E (

length L (F/g.). The material of the bar is elastic with modulus £.
f— L —— |2

Required: Determine the force P needed to elongate the bar by A.

16
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Example 11. Parallel Bars With Applied Displacement 3)lioll

Given: The two-bar structure of Example 4.7 is shown in Fig. The system is statically redundant. Due to load A
the rigid boss displaces downward by v.

(a) Barl Bar2 (b) iPl ?Pz
Required: Using the displacement method, for the particular case
L,=2L, A,=4A, and E, = E, = E, determine (a) the relationship _T_ A, 4, f
between force Fand displacement vand (b) the stress in each Ly |g, E,
bar, o, and o, l Ly
. A
Rigid Boss Rigid Boss

17
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Example 12. Two In-Line Bars 6)liaJl
Given: The redundant system of Example 4.8 consists of two bars in series: Bars 1 .
and 2, fixed at their ends (Fig.). The applied load W at the junction displaces it by (@ (®) ?PI
distance v. -
Required: For the particular case L, =2L,, A, =4A,, and E, = E, = E, determine Ay
(a) the load W to cause displacement v, and (b) how the load is distributed to the Ly E, Bar 1
individual bars.

L, A, | Bar2

18
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Example 13. Hanging Lamp

Given: A lamp weighing W/=60 N is supported by two wires, both of length
L =1.5 m and diameter D =2.5 mm. The distance between the two cable
mounts is s = 2.4 m so that point Bis H =0.9 m below horizontal line AC.
The wires are made of steel with modulus £ =207 GPa and yield strength
S, =345 MPa. Assume the wire below point B is rigid and of sufficient ()
strength. I

Required: Using the displacement method, determine
(a) the downward displacement v of the lamp and
(b) the tension in each wire, 7,- =Tz~ =T.

19
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Example 14. Stiffness of a Wheel with Many Spok

Note: The displacement method is especially well suited for systems with many redundant members. For such
systems, the force method is generally impractical.

Given: A bicycle wheel of radius R has N spokes, each of cross-sectional
area A. The modulus of the spokes is £. The rim and hub are taken to be

rigid. The weight and dynamic forces of the rider cause downward force F
at the rigid wheel hub, displacing it downward by distance v (Fig.a—c).

Solution: Consider a triangular-shaped element d@ at angle &to the

horizontal (Fig.d), dashed triangle. The number of spokes represented
by element d@, is.

N
dN = —d6
2T

N
The cross-sectional area of the spokesin d@ is: dA = A—d6

T
Step 1. Displacement—Elongation. A() = vsinf = &(8) = (v/R)sinb

EAN
Steps 2 and 3. Force—elongation. dP(0) = d(0)dA = E€(0)dA = ——vsin0df

2T 21
e EAN
Step 4. Equilibrium. F = j dP(0)sinf = (EANv/ZnR)J sin? 8df = ——v
0 0

_ spokes (tension) Pretensi
Step 3. Results and Comments. K = F/v = EAN/2R o(@) =(Ev/R)sinf {spokes (compression) | ctenson

Strength of Materials - R&IS-Eng. - 2023-2024 - L4 20
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3. Thermal Loading gf_‘j
Changes in temperature cause materials to expand or contract. Consider a bar of length £ that is free t6™""
expand. When the temperature is increased by an amount AT, the length of the bar increases by:

A= La AT a (1/°C) E (GPa)

where QL is the coefficient of thermal expansion.

Steel 14%x10 ~° 200
The thermal strain &, of the bar is then: Aluminum  23x10 -0
& =— = alAT Concrete 7%X107° 30

L

The coefficient of thermal expansion is a material property, its unit are the inverse of temperature (e.g., 1/°C, 1/°F).

The above 7able provides representative material properties for steel, aluminum, and concrete. Although they

actually vary with temperature, the coefficients @ and modulus E are taken as constant here.

When two materials with different expansion coefficients must deform together, internal thermal stresses
will develop within the system.

21
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Example 15. Unconstrained Expansion of a Steel Bar cl_|L1_.:|_TI

Given: An unconstrained (free to expand) steel bar of length L = 1.0 m is heated from room temperature (25°C) to 100°C.

Required: Determine (a) the thermal strain €, and (b) the elongation A of the bar.
Solution: Step 7. The thermal strainis: & = aAT = (14 x 107°°C™1)[(100 — 25)°C] = 1.05 x 1073
Step 2. The elongation is: A=¢glL =(1.05x1073)(1m) = 1.05 mm

Thermal and Mechanical Loading (Temperature and Applied Stress)

. - . ﬁ
The unconstrained next bar of length L is now subjected to a constant (@ T GATL
. . . . —— [ ———— - |
axial stress 0. The temperature is then increased by AT'. The total strain
. . . . A E, o
in the bar is the sum of the mechanicaland thermal strains, £, and €, :
o (b) o
£=em+8t=E+aAT <4 —>
: e (c) O
The change in length is: 0’ i 5
A= el = (— + aAT)L

E

22
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Example 16. Steel Bar under Applied Stress and Temperature

Given: The Shown unconstrained steel bar of length L =1.0m and
square cross-section of side b=20mmis subjected to a compressive

axial load P = 20 kN. The modulusis E = 200 GPa.

Required: Determine the temperature increase AT that must be applied

to the loaded bar to return it to its original Iength.

P

i:'u_Li_rJ_U
@ . S
AE, o
(b) P
— <—
(c) P
— AT ? =

Solution: By applying temperature, the compressed bar is to expand to its original length, so the total

elongation of the bar due to the mechanical and thermal loads is zero:

—P

o o
A=5L=(E+aAT)L=O >~ 4abT =0 =3 +alT =0

EA
20 x 103 [N]

P

>SAT =——=

AT

T 14 x 10-6[°C~1] x (200 x 10°[N/m2]) x (20 x 20 X 10-6[m?]

aEA

=17.9°C
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Example 17. Aluminum Rod with Fixed Ends @ | L > §liall
Given: An aluminum rod fixed between two rigid supports 1 FE.a ‘
Required: Determine the stress in the rod when itis heated by 35°C.
. . X (h) P
Solution: The total change in length is zero: —p AT <4

0O 0}
A=€L=(E+aAT)L=O > = +alT =0 = o = —EaliT =

o = —(70 x 10°[Pa]) x (23 x 107¢[°C~1])(35[°C]) = —56350 x 103[Pa] = —56.4 [MPa] (compression)

24
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Example 18. Loss of Prestress in Reinforced Concrete under Thermal Load
Given: A representative element of reinforced concrete (square cross-section 40x40 mm) @

6)jliaJl

surrounds a single high strength steel rebar (diameter D = 10 mm), as shown. The system Cross-section of clement
is prestressed by tightening the rebar endcaps, which places the steel rebar in tension and @ Es,0s
the concrete in compression. No external load is applied to the system. The purpose of A, T Eeac
prestressing is to prevent tensile stresses in the concrete —and thus avoid fracture or H | . .
cracking— by preloading the concrete in compression. Here, the rebar is under a tensile End-cap
stress of 05, = 250 MPa. Assume that the rebar and concrete remain the same length. [ 4
Required: Determine (a) the stress in the concrete after the prestressing process and
(b) the loss of prestress in the concrete when the temperature increases from 20 to 40°C. © Oep
Solution: Step 7. Stress due to prestressing. ) O
The area of the steel is: Ag = %(0.01 m)?= 78.54 x 107® m? oo

(d)

The area of the concrete is thus: [ :| T

Ac = (0.04 X 0.04 m?) — Ag = 1600 x 1076 — 78.54 x 1076 = 1521 x 10~6 m?

. . . . (e) =
The stress in the concrete due to the mechanical prestress is found from equilibrium of (¢): 3] Oor + Ot
» Gg,p+ Ot
OspAs + 0cplAc =0 = 0, = —05,A5/Ac= —12.9 MPa (compression) 3 6o + O
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Step 2. Stress due to thermal loading. When temperature is applied, both materials expand

figure (d). Unconstrained, the steel would expand more than the concrete. Here, since the
materials are constrained to remain the same length, thermal stresses — stresses due to the

thermal load — are inducedin each material gg ; and o ;.
During thermal loading, no external mechanical load is applied to the system. Thus, the

thermal stresses are in equilibrium: OstAs +0cAc =0 = 0O¢cr=— os,tAs/Ac

Consider the prestressed length as the reference for the thermally induced strain. Since the
concrete and steel must expand or contract together, their strains due to thermal loading
are the same. These strains are a combination of the free thermal expansion of each
material, @ AT, and the elastic strain due to the induced thermal stresses:

0} 0,
SS,t — asAT + % — gC,t — acAT + ﬂ

E
Rearranging and solving for the thermal stgress in the steel gives: ¢
E ES AS Es(ac - as)
gt = Es(ac — ag)AT + _UCt = Es(ac — as)A — 05 = = Og; = AT
E. EcAc ’ 1 4 Esds
200(7 — 14) x 107° EcAc

(40 — 20) = —20.83 MPa (compression)

St =1+ [200(78.54)/30(1521)]
ocp = — 051 Ag/Ac= —(—20.83)(78.54/1521) = 1.08 MPa  (tension)

Step 3. Total stress: Og = 250 — 20.83 = 229.17 MPa Oc = —129+ 1.08 = —11.82 MPa

v

deoln
ojligJl

(a)

(b)

(c)

Cross-section of element

Eg,og

— E¢q,ac

L ——

End-cap

ig

Oc,p

r 5
a

Suf?

(d)

(e)

op

rYvYY

Gep + Oyt

Oyp+ Ot

YYyYyY

111
YYY

Oep + %t
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Example 19. Two-Bar Structure under Mechanical and Thermal Loads & _|L1_|:|_T|

Given: A two-bar structure, Bars 1 and 2. Each bar has length £, ( p
cross-sectional area A4, modulus £ yield strength Sy, and thermal @) )
expansion coefficient & . The system is subjected to a tensile load 2.

Bar 2 is subjected to a thermal load A I greater than Bar 1. The bars Bar1 Bar2 AAA AAA
are constrained to remain the same |ength. The material properties T T

are assumed to be constant with temperature. T

Required: (a) Determine the stress in each bar due to thermal and
mechanical loading. (b) Determine the conditions to avoid yielding

in terms of force Pand temperature increase AT Present the result

2 oM
2 Mmoa
-

on a plot. AL
Solution: Step 7. Mechanical loading. Since the bars are

identical, due to applied load 7, they support the same
mechanical stress and have the same strain (Figure b): Rigid Boss

O1p = 02p =5 and E1p = &P =5 ¢

-
o
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Step 2. Thermal loading. Apply temperature A Tto Bar 2. Compatibility requires the same additional strain in each bar: idjﬁﬂj
(©) 6, = P EaAT .

O1t

02t
E1p = - = €20 = -t all 24 ZP .
™ G — _ EoAT
where 04 ¢ and 07 ¢ are the additional stresses induced in the bars by the increase in temperature of T r44 24 :
Bar 2. Equilibrium relates the thermal stresses.
0-1th + O-Z,tA — 0 4 O-l,t — _O-Z,t
From compatibility of the thermal strains, and equilibrium, the induced thermal stresses are:
AT
EaAT q EaAT
O1¢t — ana op¢ = —
1.t 5 2,t 5

Step 3. The total stress in each bar as a function of Pand A Tis found by superimposing the stresses
from the mechanical and thermal cases (Figure ¢):

P EaAT P EaAT
01 = Oup + 01t = 5+ — and 0z =03p+ 03 =7~
P
Step 4. Yielding. Since Pand A Tare positive in this case, then 0; > 0. Tensile yielding occurs when 07 reaches the yield

strength Sy. To avoid yielding:

11P
01 =§[Z-|—ECZAT] <Sy
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Step 4. Yielding. Since Pand A Tare positive in this case, then 07 > 07,. Tensile yielding occurs when 07 reaches the ~ §jliall
yield strength Sy. To avoid yielding: |

1P
0q =E[Z+E(XAT] <Sy

(d)
EoAT A
When AT = 0, yielding occurs when: P = P, = 24S, C;Sy
When P = 0, yieldi h AT = AT, = 22 :
en P = 0, yielding occurs when: = = —=
Y g Y = g

Yielding

Normalizing 07 by the yield strength §,, , the equation to avoid yielding in Bar 1 reduces to

Elastic

P_ FadT P AT i — >
or

248, " 28, P, ' AT, 245,

A Temperature-Force Failure Map for the system can be plotted as shown in Figure (d). The solid line is the boundary at which

yielding occurs. Provided that the operating condition — temperature change A 7and load P— lies within this boundary,yielding
does not occur.
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