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Nonlinear Control systems  



Nonlinear System Behavior 
 • Limit Cycles 

Nonlinear systems can display oscillations of fixed amplitude 
and fixed period without external excitation. These oscillations 
are called limit cycles, or self-excited oscillations. This 
important phenomenon can be simply illustrated by a famous 
oscillator dynamics, first studied in the 1920's by the Dutch 
electrical engineer Balthasar Van der Pol. 



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

The second-order nonlinear differential equation  

mẍ + 2c(x2 -l) ẋ + kx = 0  

where m, c and k are positive constants, is the famous Van der 
Pol equation. It can be regarded as describing a mass-spring-
damper system with a position-dependent damping coefficient 
2c(x2 - 1) (or, equivalently, an RLC electrical circuit with a 
nonlinear resistor).  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

• For large values of x, the damping coefficient is positive and 
the damper removes energy from the system. This implies 
that the system motion has a convergent tendency. However, 
for small values of x, the damping coefficient is negative and 
the damper adds energy into the system. This suggests that 
the system motion has a divergent tendency.  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 

• Therefore, because the nonlinear damping varies with x, the 
system motion can neither grow unboundedly nor decay to 
zero. Instead, it displays a sustained oscillation independent 
of initial conditions, as illustrated in Figure. This so-called 
limit cycle is sustained by periodically releasing energy into 
and absorbing energy from the environment, through the 
damping term. This is in contrast with the case of a 
conservative mass spring system, which does not exchange 
energy with its environment during its vibration.  



Nonlinear System Behavior 
 • Limit Cycles   Example  

• Van der Pol Equation 



Nonlinear System Behavior 
 • Limit Cycles 

• Of course, sustained oscillations can also be found in linear systems, 
in the case of marginally stable linear systems (such as a mass-
spring system without damping) or in the response to sinusoidal 
inputs. However, limit cycles in nonlinear systems are different from 
linear oscillations in a number of fundamental aspects. First, the 
amplitude of the self-sustained excitation is independent of the 
initial condition, as seen in Figure, while the oscillation of a 
marginally stable linear system has its amplitude determined by its 
initial conditions. Second, marginally stable linear systems are very 
sensitive to changes in system parameters (with a slight change 
capable of leading either to stable convergence or to instability), 
while limit cycles are not easily affected by parameter changes. 
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Nonlinear System Behavior 
 • Limit Cycles 

• Limit cycles represent an important phenomenon in nonlinear 
systems. They can be found in many areas of engineering and 
nature. Aircraft wing fluttering, a limit cycle caused by the 
interaction of aerodynamic forces and structural vibrations, is 
frequently encountered and is sometimes dangerous. The hopping 
motion of a legged robot is another instance of a limit cycle. Limit 
cycles also occur in electrical circuits, e.g., in laboratory electronic 
oscillators. As one can see from these examples, limit cycles can be 
undesirable in some cases, but desirable in other cases. An 
engineer has to know how to eliminate them when they are 
undesirable, and conversely how to generate or amplify them 
when they are desirable. To do this, however, requires an 
understanding of the properties of limit cycles and a familiarity 
with the tools for manipulating them. 
 



Nonlinear System Behavior 
 • Bifurcations 

• As the parameters of nonlinear dynamic systems are 
changed, the stability of the equilibrium point can change (as 
it does in linear systems) and so can the number of 
equilibrium points. Values of these parameters at which the 
qualitative nature of the system's motion changes are known 
as critical or bifurcation values. The phenomenon of 
bifurcation, i.e., quantitative change of parameters leading to 
qualitative change of system properties, is the topic of 
bifurcation theory.  

 



Nonlinear System Behavior 
 • Bifurcations 

• For instance, the smoke rising from an incense stick 
(smokestacks and cigarettes are old-fashioned) first 
accelerates upwards (because it is lighter than the ambient 
air), but beyond some critical velocity breaks into swirls. 
More prosaically, let us consider the system described by the 
so-called undamped Duffing equation 

ẍ + αx + x3 = 0 

(the damped Duffing equation is ẍ + cẋ + αx + βx3 = 0 , which 
may represent a mass-damper-spring system with a hardening 
spring).  



Nonlinear System Behavior 
 • Bifurcations 

• We can plot the equilibrium points as a function of the 
parameter α. As α varies from positive to negative, one 
equilibrium point splits into three points (xe = 0, 𝜶 ,− 𝜶), as 
shown in Figure (a). This represents a qualitative change in 
the dynamics and thus α = 0 is a critical bifurcation value. 
This kind for bifurcation is known as a pitchfork, due to the 
shape of the equilibrium point plot in Figure (a). 
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 • Bifurcations 

 



Nonlinear System Behavior 
 • Bifurcations 

• Another kind of bifurcation involves the emergence of limit 
cycles as parameters are changed. In this case, a pair of 
complex conjugate eigenvalues P1= ϒ + jω,   P2= ϒ - jω cross 
from the left-half plane into the right-half plane, and the 
response of the unstable system diverges to a limit cycle. 
Figure (b) depicts the change of typical system state 
trajectories (states are x and ẋ) as the parameter α is varied. 
This type of bifurcation is called a Hopf bifurcation. 
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 • Bifurcations 

 



Nonlinear System Behavior 
 • Chaos 

• For stable linear systems, small differences in initial 
conditions can only cause small differences in output. 
Nonlinear systems, however, can display a phenomenon 
called chaos, by which we mean that the system output is 
extremely sensitive to initial conditions. The essential feature 
of chaos is the unpredictability of the system output. Even if 
we have an exact model of a nonlinear system and an 
extremely accurate computer, the system's response in the 
long-run still cannot be well predicted. 



Nonlinear System Behavior 
 • Chaos 

• Chaos must be distinguished from random motion. In random 
motion, the system model or input contain uncertainty and, 
as a result, the time variation of the output cannot be 
predicted exactly (only statistical measures are available). In 
chaotic motion, on the other hand, the involved problem is 
deterministic, and there is little uncertainty in system model, 
input, or initial conditions. 

 



Nonlinear System Behavior 
 • Chaos 

• As an example of chaotic behavior, let us consider the simple 
nonlinear system 

ẍ + 0.1ẋ + x5 = 6 sin t 

• which may represent a lightly-damped, sinusoidally forced 
mechanical structure undergoing large elastic deflections. 
Figure shows the responses of the system corresponding to 
two almost identical initial conditions, namely x(0) = 2, ẋ (0) = 
3 (thick line) and x(0) = 2.01, ẋ (0) = 3.01 (thin line). Due to 
the presence of the strong nonlinearity in x5 , the two 
responses are radically different after some time. 
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Nonlinear System Behavior 
 • Chaos 

• Chaotic phenomena can be observed in many physical 
systems. The most commonly seen physical problem is 
turbulence in fluid mechanics (such as the swirls of our 
incense stick). Atmospheric dynamics also display clear 
chaotic behavior, thus making long-term weather prediction 
impossible. Some mechanical and electrical systems known 
to exhibit chaotic vibrations include buckled elastic 
structures, mechanical systems with play or backlash, 
systems with aeroelastic dynamics, wheelrail dynamics in 
railway systems, and, of course, feedback control devices. 

 

 



Nonlinear System Behavior 
 • Chaos 

• Chaos occurs mostly in strongly nonlinear systems. This 
implies that, for a given system, if the initial condition or the 
external input cause the system to operate in a highly 
nonlinear region, it increases the possibility of generating 
chaos. Chaos cannot occur in linear systems. Corresponding 
to a sinusoidal input of arbitrary magnitude, the linear system 
response is always a sinusoid of the same frequency. By 
contrast, the output of a given nonlinear system may display 
sinusoidal, periodic, or chaotic behaviors, depending on the 
initial condition and the input magnitude. 

 



Nonlinear System Behavior 
 • Chaos 

• In the context of feedback control, it is of course of interest to 
know when a nonlinear system will get into a chaotic mode 
(so as to avoid it) and, in case it does, how to recover from it. 
Such problems are the object of active research. 

 



Nonlinear System Behavior 
 • Other behaviors 

• Other interesting types of behavior, such as jump resonance, 
subharmonic generationand frequency-amplitude 
dependence of free vibrations, can also occur and become 
important in some system studies. However, the above 
description should provide ample evidence that nonlinear 
systems can have considerably richer and more complex 
behavior than linear systems. 
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Stability & Output of systems 

• Stability depends on the system’s parameter (linear) 
 

• Stability depends on the initial conditions, input signals as well as the system 
parameters (nonlinear). 
 

• Output of a linear system has the same frequency as the input although its 
amplitude and phase may differ. 
 

• Output of a nonlinear system usually contains additional frequency 
components and may, in fact, not contain the input frequency.  



 



 


