

Calculus 2

Dr. Yamar Hamwi

Al-Manara University

2023-2024

Calculus 2

Lecture 6

Infinite Series

The Integral Test

THEOREM The Integral Test

If f is positive, continuous, and decreasing for $x \ge 1$ and $a_n = f(n)$, then

$$\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \int_1^{\infty} f(x) \, dx$$

either both converge or both diverge.

Example

Apply the Integral Test to the series

$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

The Integral Test

جَـامعة المَـنارة **Solution** The function $f(x) = x/(x^2 + 1)$ is positive and continuous for $x \ge 1$. To determine whether *f* is decreasing, find the derivative.

$$f'(x) = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{-x^2 + 1}{(x^2 + 1)^2}$$

So, f'(x) < 0 for x > 1 and it follows that *f* satisfies the conditions for the Integral Test. You can integrate to obtain

$$\int_{1}^{\infty} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \int_{1}^{\infty} \frac{2x}{x^{2} + 1} dx$$
$$= \frac{1}{2} \lim_{b \to \infty} \int_{1}^{b} \frac{2x}{x^{2} + 1} dx$$
$$= \frac{1}{2} \lim_{b \to \infty} \left[\ln(x^{2} + 1) \right]_{1}^{b}$$
$$= \frac{1}{2} \lim_{b \to \infty} \left[\ln(b^{2} + 1) - \ln 2 \right]$$
$$= \infty$$

So, the series *diverges*.

Alternating Series

If $\sum a_n$ is a positive series,

then $\sum_{n=1}^{\infty} (-1)^n a_n$ is an alternating series.

Example: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$

Alternating Series

$$\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$
$$= 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \cdots$$

is an *alternating geometric series* with $r = -\frac{1}{2}$. Alternating series occur in two ways: either the odd terms are negative or the even terms are negative.

THEOREM Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge when the two conditions listed below are met.

1.
$$\lim_{n \to \infty} a_n = 0$$

2. $a_{n+1} \le a_n$, for all n

لَّمَـنارة

Alternating Series

Example

Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} \, (-1)^{n+1} \, \frac{1}{n}.$$

Solution Note that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$. So, the first condition of Theorem is satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

$$a_{n+1} = \frac{1}{n+1} \le \frac{1}{n} = a_n$$

for all *n*. So, applying the Alternating Series Test, you can conclude that the series converges.

Alternating Series

Example When the Alternating Series Test Does Not Apply

The alternating series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n} = \frac{2}{1} - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \frac{6}{5} - \cdots$$

passes the second condition of the Alternating Series Test because $a_{n+1} \le a_n$ for all n. You cannot apply the Alternating Series Test, however, because the series does not pass the first condition. In fact, the series diverges.

Absolute and Conditional Convergence

Definitions of Absolute and Conditional Convergence

- **1.** The series $\sum a_n$ is **absolutely convergent** when $\sum |a_n|$ converges.
- 2. The series $\sum a_n$ is conditionally convergent when $\sum a_n$ converges but $\sum |a_n|$ diverges.

THEOREM Absolute Convergence

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ also converges.

Absolute and Conditional Convergence

Example

Determine whether each of the series is convergent or divergent, Classify convergent series as absolutely or conditionally convergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} = -\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \cdots$$
Solution

This series can be shown to be convergent by the Alternating Series Test. Moreover, because the *p*-series

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \cdots$$

diverges, the given series is conditionally convergent.

Absolute and Conditional Convergence

Example

Determine whether each of the series is convergent or divergent, Classify convergent series as absolutely or conditionally convergent.

Solution

In this case, the Alternating Series Test indicates that the series converges. However, the series

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\ln(n+1)} \right| = \frac{1}{\ln 2} + \frac{1}{\ln 3} + \frac{1}{\ln 4} + \cdots$$

diverges by direct comparison with the terms of the harmonic series. Therefore, the given series is *conditionally* convergent.

Rearrangement of Series

Rearrangement of Series

A finite sum such as

1 + 3 - 2 + 5 - 4

can be rearranged without changing the value of the sum. This is not necessarily true of an infinite series—it depends on whether the series is absolutely convergent or conditionally convergent.

- **1.** If a series is *absolutely convergent*, then its terms can be rearranged in any order without changing the sum of the series.
- 2. If a series is *conditionally convergent*, then its terms can be rearranged to give a different sum.

The Ratio and Root Tests

The Ratio Test

This section begins with a test for absolute convergence-the Ratio Test.

THEOREM a b a series with nonzero terms. **1.** The series Σa_n converges absolutely when $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$. **2.** The series Σa_n diverges when $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$. **3.** The Ratio Test is inconclusive when $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$.

The Ratio and Root Tests

Example

Determine the convergence or divergence of

 $\sum_{n=0}^{\infty} \frac{2^n}{n!}.$ Solution

REMARK

$$\frac{n!}{(n+1)!} = \frac{n!}{(n+1)n!} = \frac{1}{n+1}.$$

جَـامعة المَـنارة

Solution Because

$$a_n = \frac{2^n}{n!}$$

you can write the following.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left[\frac{2^{n+1}}{(n+1)!} \div \frac{2^n}{n!} \right]$$
$$= \lim_{n \to \infty} \left[\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right]$$
$$= \lim_{n \to \infty} \frac{2}{n+1}$$
$$= 0 < 1$$

This series converges because the limit of $|a_{n+1}/a_n|$ is less than 1.

Example

Determine whether each series converges or diverges.

a.
$$\sum_{n=0}^{\infty} \frac{n^2 2^{n+1}}{3^n}$$
 b. $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

Solution

a. This series converges because the limit of $|a_{n+1}/a_n|$ is less than 1.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left[(n+1)^2 \left(\frac{2^{n+2}}{3^{n+1}} \right) \left(\frac{3^n}{n^2 2^{n+1}} \right) \right]$$
$$= \lim_{n \to \infty} \frac{2(n+1)^2}{3n^2}$$
$$= \frac{2}{3} < 1$$

جَـامعة المَـنارة

b. This series diverges because the limit of $|a_{n+1}/a_n|$ is greater than 1.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left[\frac{(n+1)^{n+1}}{(n+1)!} \left(\frac{n!}{n^n} \right) \right]$$
$$= \lim_{n \to \infty} \left[\frac{(n+1)^{n+1}}{(n+1)} \left(\frac{1}{n^n} \right) \right]$$
$$= \lim_{n \to \infty} \frac{(n+1)^n}{n^n}$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
$$= e > 1$$

The Root Test

THEOREM 9.18 Root Test 1. The series $\sum a_n$ converges absolutely when $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$.

2. The series
$$\sum a_n$$
 diverges when $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$ or $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$.

3. The Root Test is inconclusive when $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$.

The Root Test
Example Determine the convergence or divergence of

$$\sum_{n=1}^{\infty} \frac{e^{2n}}{n^n}.$$

Solution: You can apply the Root Test as follows

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{e^{2n}}{n^n}}$$
$$= \lim_{n \to \infty} \frac{e^{2n/n}}{n^{n/n}}$$
$$= \lim_{n \to \infty} \frac{e^2}{n}$$
$$= 0 < 1$$

ä ö

Because this limit is less than 1, you can conclude that the series converges absolutely (and therefore converges).

Strategies for Testing Series

GUIDELINES FOR TESTING A SERIES FOR CONVERGENCE OR DIVERGENCE

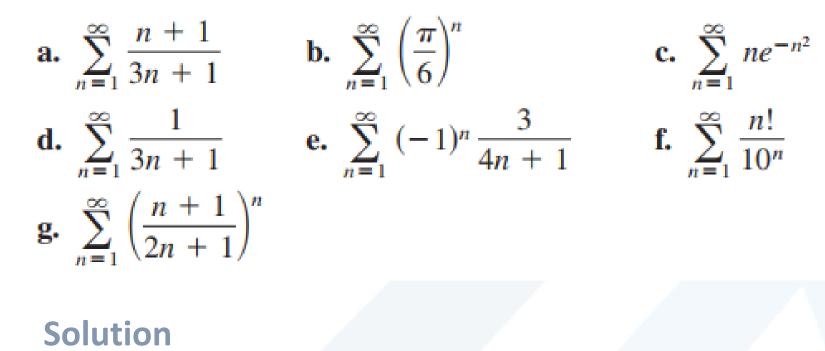
- **1.** Does the *n*th term approach 0? If not, the series diverges.
- 2. Is the series one of the special types—geometric, *p*-series, telescoping, or alternating?
- 3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
- 4. Can the series be compared favorably to one of the special types?

الْمَـنارة

Infinite Series

Example

Determine the convergence or divergence of each series.



جًامعة المًـنارة

Infinite Series

- **a.** For this series, the limit of the *n*th term is not $0 (a_n \rightarrow \frac{1}{3} \text{ as } n \rightarrow \infty)$. So, by the *n*th-Term Test, the series diverges.
- b. This series is geometric. Moreover, because the ratio of the terms

$$r = \frac{\pi}{6}$$

is less than 1 in absolute value, you can conclude that the series converges.

c. Because the function

 $f(x) = xe^{-x^2}$

is easily integrated, you can use the Integral Test to conclude that the series converges.

d. The *n*th term of this series can be compared to the *n*th term of the harmonic series. After using the Limit Comparison Test, you can conclude that the series diverges.

- **e.** This is an alternating series whose *n*th term approaches 0. Because $a_{n+1} \le a_n$, you can use the Alternating Series Test to conclude that the series converges.
- f. The nth term of this series involves a factorial, which indicates that the Ratio Test may work well. After applying the Ratio Test, you can conclude that the series diverges.
- **g.** The *n*th term of this series involves a variable that is raised to the *n*th power, which indicates that the Root Test may work well. After applying the Root Test, you can conclude that the series converges.

SUMMARY OF TESTS FOR SERIES

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
<i>n</i> th-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty} a_n \neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	0 < r < 1	$ r \ge 1$	Sum: $S = \frac{a}{1 - r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty} b_n = L$		Sum: $S = b_1 - L$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	0	
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_N \le a_{N+1}$
Integral (<i>f</i> is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx \text{ converges}$	$\int_{1}^{\infty} f(x) dx \text{ diverges}$	Remainder: $0 < R_N < \int_N^\infty f(x) dx$

н.

SUMMARY OF TESTS FOR SERIES

	r		1	
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1 \text{ or}$ $= \infty$	Test is inconclusive when $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1.$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \text{ or}$ $= \infty$	Test is inconclusive when $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges	
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges	

Thank you for your attention