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" Projection matrices

* Orthonormal Bases: Gram-Schmidt Process
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Length and Dot Product in R”
« Length:

The length of a vector v=(v;, 1, ..., v,) in R"is given by

=i

n

- Note: The length of a vector is also called its norm.

= Notes: Properties of length

(1)]v] =0

(2) vl=1= v iscalled a unit vector

(3)[¥] = 0iff v=0
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« EX:
(a) In R>, the length of v= (0, -2, 1, 4, -2) is given by

V] = 02 + (=27 + 1> +4> +(-2)> =25 =5

(D) In R3the length of v = [\/?_7 \/_% : \/T_J IS given by

|v| = ELT + [_—2]2 + (if _ 7 (vis a unit vector)
J17 J17 J17 17
« A standard unit vector in R":
{e,e,...,e}={10,..,0),(01,..0), ..., (00,...,1)}
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« EX:
the standard unit vector in R*: {Z /} = {(1, 0), (0, 1)}

the standard unit vector in R®: {7 j & = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

« Notes: (Two nonzero vectors are parallel)
U=:¢cv
(1) ¢> 0 = wand vhave the same direction

(2) c< 0= uwand vhave the opposite direction

= Theorem : (Length of a scalar multiple)
Let vbe a vector in R”and cbe a scalar, then |cv]| =|c]||v]
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« Theorem : (Unit vector in the direction of v)

— . Vv
If vis a nonzero vector in R”, then the vector v = —

direction as v H"“
This vector zis called the unit vector in the direction of v,

has length 1 and has the same

« Note: The process of finding the unit vector in the direction of v is called
normalizing the vector v.

« EX : (Finding a unit vector)
Find the unit vector in the direction of v= (3, -1, 2), and verify that this vector has
length 1.

Sol:

M=y3 (1) +2 = ia

https://manara.edu.sy/



Py

dsD "
% 3,-1,2)

) I -
:H_\/32+(—1)2+22 N7 (\/_ Vg \/_]

\/(%T N [%4]2 ' [%T - 5 — 1= W is a unit vector

« Distance between two vectors:

[
-

The distance between two vectors zand vin R”is: d(u, v) = Hll — V||

Vi, V
(vi,v2) d(u, v) . 1)

= Notes: (Properties of distance) B st
(1) Q(”, V) >0 v u
(2) du, v=0ifand only if u= v
3) da, v)=dv, v
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« EX : (Distance between 2 vectors)

The distance between #= (0, 2, 2) and v=(2,0, 1) is

du, v) = u—v|=](0-2),2-0,2 -] = (=2 +2* + 1> =3

« Dot product in R":
The dot product of u= (u, u,, ..., u,) and v= (v, v, ..., v,) IS the scalar quantity

u-v=1uv+iuv,+---+uyv,

« EX : (Finding the dot product of two vectors)
The dot product of z= (1, 2,0, -3) and v=(3, -2, 4, 2) IS
u-v=(D3)+2)N-2)+0)4)+(=3)2) =-T7
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= Theorem : (Properties of the dot produci) "
If z, v, and ware vectors in R” and cis a scalar, then the following properties are true.
(1) uv=v.u
(2) u(v+ wW=uv+uw
(3) du.v) = (cu).v=u(cv)
(4) v.v>0, and v.v=0 ifand only if v=20

(5) vov = o
- Euclidean 7-space:
R" was defined to be the set of all order z-tuples of real numbers. When R” is combined
with the standard operations of vector addition, scalar multiplication, vector length, and
the dot product, the resulting vector space is called Euclidean m-space.
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« EX : (Finding dot products)
u=(2,-2), v=(5, 8), w=(-4, 3)
(4) u.v B (@yw  (Qu2y (@] (&) m(v—2w)

Sol:
(4) m.v=(2)(5) + (-2)(8) = -6

(D) (m.Vw=-w=-6(-4, 3) = (24, -18)

(o) u.(2v) = 2(u.v) =2(-6) = -12

() [w= wow= (-4)(~4) + (3)(3) = 25

(&) (v—2w) = (5-(-8),8—6) = (13, 2)
u(v-2w)=(2)(13) + (-2)(2) = 22
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« EX : (Using the properties of the dot product)
Given u.u=39, u.v= -3, v.v=79
Find (z+2v).(3u+ v)
Sol:
(u+2v).3u+ V) =u(3u+v)+2v.(3u+v)
=u3u)+ uv+(2v). Bu)+(2V).v
=3(u.u) + u.v+ 6(v.u) + 2(v.v)
=3(u.u) + 7(u.v) + 2(v.v)
=3(39) + 7(-3) + 2(79) = 254
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« Theorem : (The Cauchy - Schwarz inequality)
If zand vare vectors in R”, then |u.v| < |ul||¥|

« EX 8: (An example of the Cauchy - Schwarz inequality)
Verify the Cauchy - Schwarz inequality for z= (1, -1, 3) and v= (2, 0, -1)
Sol:
uu=11, uv=-1, v.v=>5
uv|=-1=1
] = e vy = V15 =55

= [u-v] < Ju ¥
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« The angle between two vectors in IR”:
cosf = ,0<0<r

Opposite Obtuse angle Right angle Acute angle Same

direction u.v<0 u-v=0 u-v>0 direction
0 6 6 u
r/ \‘*. \ \ ! % 6 u
— T > v - v - v - vV - @ g Vv
o=r1 Z<co<n =1L U-f:ﬂ-c:%r 6=0
cos 0= -1 - R cos 6 =1
cos <0 cos =0 cos 8> 0

= Note:

The angle between the zero vector and another vector is not defined.
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« EX : (Finding the angle between two vectors)

u=(-4,0,2,-2), v=(2,0,-1,1)
Sol:

ul| = = (47 +0° +2% + (-2 =24
W =vr =J@7 + 0 + (—17 + 12 =6
uv=(-42)+0)0)+2)(-D+(-2)1) =-12
u-v -12 —12

el V246 iad4

= 6 = 7 uand vhave opposite directions (z=-2v)

= cos @ = —1

https://manara.edu.sy/
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Orthogonal vectors
Two vectors are orthogonal when their dot product is zero: v-w = v -w = 0
Think of Pythagoras: right triangle with sides v and w.
Orthogonal vectors v'-w =0 and Ivll? + [lw]|?=|lv + w]||?

The right side is (v + w)T - (v + w) This equals vT- v + wT - w

whenw? cv=vT -w=0

https://manara.edu.sy/ niLST4%
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Orthogonal subspaces b

Two subspaces V and W of a vector space are orthogonal if every vector
v In V Is perpendicular to every vector w in W:

Orthogonal subspaces v' -w = 0forall vinV and w in W

Example 1 The floor of your room (extended to infinity) is a subspace V. The line where
two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal.

Every vector up the meeting line of the walls is perpendicular to every vector in the floor

Example 2 Two walls look perpendicular but those two subspaces are not orthogonal!
The meeting line is in both ¥V and W -and this line is not perpendicular to itself.

Two planes (dimensions 2 and 2 in R?) cannot be orthogonal subspaces.

https://manara.edu.sy/
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When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular to itself.

W I
i ’Ui w
v SO 4

orthogonal plane V" and line W non-orthogonal planes

The crucial examples for linear algebra come from the four fundamental subspaces.

https://manara.edu.sy/
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Row space is orthogonal to the Nullspace, Because Ax = 0: Every vector x in the
nullspace is perpendicular to every row of A,

s — e —

row 1 P 0 (row 1) - x is zero

|

Ax = : T

fow 1 ol — (rowm) - x is zero

Every row has a zero dot product with x. Then x is also perpendicular to every
combination of the rows.

The whole row space C(AT)is orthogonal to N (A).

https://manara.edu.sy/
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Every vector y in the nullspace of AT is perpendicular to every column of A.
The left nullspace N(AT) and the column space C(A) are orthogonal in R™

(column 1)1 | 0
C(A) L N(AT) ATy — . y| =
(column n)* 0

. il . il b— —

https://manara.edu.sy/
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dimension
=p

dimension
=y

column
space
of A

nullspace

nullspace of AT

of A

dimension
=m-r

dimension
=n-r
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« Orthogonal Complements:
If Wis a subspace of R™, then the set of all vectors in R™ that are orthogonal to every
vector in Wis called the orthogonal complement of Wand is denoted by the symbol W+
« Theorem:
If Wis a subspace of R™, then:
(a) Wis a subspace of V
(b) W nw ={0} ) R"=Waew"

« Note:
If Wis a subspace of R", then (W*)* =W

https://manara.edu.sy/
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« EX:
AY y
WL
W
2 |
|
\\\ | X
— >
X /
> s/
| ’\Wi
5/
R R

« Theorem : If Ais an m X n matrix, then:

(a) N(A) and the C(AT) are orthogonal complements in R"
(b) N(A?) and the C(A) are orthogonal complements in R™
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dim r dim r
all combinations all combinations
of the rows Ax.=b p» of the
/s 2 columns
Ax=05b
S x=x+x,
Rn ‘ ,/I,’ ‘ Rm
X £
y Ax, =0 all vectors
all vectors orthogonal to
orthogonal the columns .
to the rows dimm —r

dimn—r
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« EX:
Find the orthogonal complement of the subspace W of &* spanned by the two column

vectors v; and v, of the matrix 4 Y
Sol: A= i 8
NS (A") and the CS(A) are orthogonal complements = 0 1]
X, | x| [-2] [-1] i, ¥

1210X2:0}:>X2:51HO

[0 00 J X3 {O X, 0 1

| X4 X4 0 0

u, &

W=span{v;, n} and W' =span{u,, u,}
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« Summary of equivalent conditions for square matrices:
If Ais an zzxn matrix, then the following conditions are equivalent:
(1) Ais invertible
(2) Ax= bhas a unique solution for any zx1 matrix b.
(3) Ax=0 has only the trivial solution

(4) A is row-equivalent to /,
(5) rank(4) = n
(6) The zrow vectors of 4 are linearly independent.

(7) The ncolumn vectors of A4 are linearly independent.
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(8) The column vectors of A span A”

(9) The row vectors of 4 span R”

(10) The column vectors of A form a basis for R”

(11) The row vectors of A form a basis for R

(12) rank(A) =n

(13) nullity(4) =0

(14) The orthogonal complement of the null space of 4 is &”
(15) The orthogonal complement of the row space of 4 is {0}

https://manara.edu.sy/
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LR LT T

. . . : Tp
orthogonal projection of b onto a is given by proj,b = a -
Projecting b onto a with errore = b — za . a-b aTb
T=——=—".
a-(b—Za)=0 or a-b—Za-a=0 a-a ala
b
| error
o & =D=p p = AZ
\ a
b y  p=%a=lla -

— A(ATA)~1ATp

The projection p of
b onto a line and
onto § = column

space of A.
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The projection of b onto the line through a is the vector , - z,- 2%,

aTa

Special case 1: If b = a then = 1. The projection of a onto a is itself. Pa = a.

Special case 2: If bis perpendicular to a then a™d = 0. The projection is p = 0.

Projection matrix:
Now comes the projection matrix. In the formula for p, what matrix is multiplying b?
You can see the matrix better if the number x is on the right side of a:

alb aal

the matrix is P = —

Projection matrix: Projp = Pb = a T Tq

https://manara.edu.sy/
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Properties of projection matrix

= Pisacolumn times a row!

= The column is a, the row is a’, divide by the number a’ a.
* The projection matrix P is m by m,

= its rank is one.

= the column space of P is the line through a

= P is symmetric PT = P

= P2 = P, Projecting a second time doesn't change anything,

https://manara.edu.sy/
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Why project?
Because Ax = b may have no solution

Instead : Solve AX = p ( projection of b onto the column space of A)
Problem: Find the combination p = T,1a, + - -- + T,a, closest to a given vector b.

Find the vector x, find the projection p = Ax, find the projection matrix P.

The key: This error vector b — Ax is perpendicular to the subspace.

https://manara.edu.sy/
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: b—Axz| =10
T
__a’n__ s " L

The matrix with those rows a’; is AT . The n equations are exactly AT (b — 4%) = 0

Note: e = (b — AX) € N(A") witch is perpendicular to €(4)

Rewrite the last equation ATA%X = ATb

https://manara.edu.sy/
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The combination p = x;a; +++ +X,,a,, that is the closest to b comes from x
Find% (n x 1) AT(b — A%X) = Oor ATAX = ATb

This symmetric matrix A’ A is n by n. It is invertible if the a's are independent.
The solution is £ = (ATA)~1ATb. The projection of b onto the subspace is p:

Find p (mx1) p= A% = A(ATA)"1ATD

The next formula picks out the projection matrix that is multiplying b
Find P (mxm) P=A(ATA) AT

The matrix A Is rectangular. It has no inverse matrix.

https://manara.edu.sy/
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Orthonormal Bases: Gram-Schmidt Process

- Orthogonal:
A set Sof vectors in an inner product space Vis called an orthogonal set if every pair of
vectors in the set is orthogonal.

S:{Vl, Vz,---,VH}CV <VI-,VJ->=O, 1#]
« Orthonormal:
An orthogonal set in which each vector is a unit vector is called orthonormal
i P
Sz{Vl, VZ,“',VH}QV <VI-,VJ->={ . J.
0 1# ]
= Note:

If S'is a basis, then it is called an orthogonal basis or an orthonormal basis.

https://manara.edu.sy/
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« EX ! (A nonstandard orthonormal basis f‘or—hRB)
Show that the following set is an orthonormal basis.

" Vs Vs
11 2 2 22 (2 2 1J
S_ > 90 ” _ B ) , — . aa—., —
NINA) 6 6 3 37 373
Sol: —
1 1 ~ - A
VI-V2=—E+E+O=O HVIH—'\/VI-VI— E—'_E-I_O_

2

2 2 2 8
NEE R N A T A
PPN N e P S Ay A B

9 9 9

ViV =

https://manara.edu.sy/
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« Ex : (An orthonormal basis for £)
with the inner product {p, @) = ayh +a;b +a,b +asb;

the standard basis A= {1, x, x2, X} is orthonormal
« EX : (An Orthogonal Set in C[0, 27])
(F.0)=[ " Fx)g(x)ax
Show that the set $= {1, sin X, cos x, sin 2x, cos 2X, ..., Sin 1x, cos zx} is orthogonal

21 21
Sol: {1, sinnx>:j0 sinnxax=0, (I, cosnx>:jo cosnxax =0
21
{SInmx, COSNx) = _[0 sinmxcosnxax =0

] ) 2w ]
(smmx,smn)o:jo sinmxsinnxax=0, m=n
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27 N
(COS/MX, COSNX) = jo cosmxcosnxax=0, m=#n

The set S'is orthogonal but not orthonormal
An orthonormal set can be formed by normalizing each vector in S

1= LD =], ax =2z
sinnx| = \/(sinnx, sinnx) = \/_[Ohsinznxdx Iz

27
COS/7X| = \/<COS/7X, COS/7X> = \/-[O COSzﬂXOIX = \/;

1 1 . 1 .
So the set Sinx, ——COSJX, - -+, —=SIN/1X, —C0S/.X + is orthonormal

J_J_ Jr r r

https://manara.edu.sy/
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= Theorem : (Orthogonal sets are linearly ind'épendent)
If S={w, », ..., v,} is an orthogonal set of nonzero vectors in an inner product space
V, then S'is linearly independent.

« Corollary to Theorem :

If V'is an inner product space of dimension #, then any orthogonal set of z nonzero
vectors is a basis for V.

« EX : (Using orthogonality to test for a basis)
Show that the following set is a basis for &

Vv, v, Vs v,
S= {2,3,2,-2), (1,0,0,1), (-1,0,21), (-1,2,-11)}
Sol:

https://manara.edu.sy/
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v, ¥, ¥, V,: nonzero vectors
iV, =2+0+0-2=0 v,.V; =—1+0+0+1=0
Vs =—2+0+4-2=0 VZ.V4=—1-I—O-I-O-I—IZO
ViVy=2+6-2-2=0 v;.¥, =1+0-2+1=0

= Sis orthogonal = Sis a basis for &*

- Theorem : (Coordinates relative to an orthonormal basis)

If $={wv, », ..., v} Is an orthogoal/orthonormal basis for an inner product space V,
and If zis any vector in V, then

<lI V1> 1 <lI V2> 2‘|‘""|‘<u, V5>VH
L

u=u, vv, +{u, v,)v, +--- +u, v. v, orthonormal

orthogonal

|

n
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= Note:
Coordinate vector of a vector win Vrelative to an orthogonal/ orthonormal basis Sis
A
(wv) (wv)  (ww,) r
[”]5: ; ) i I 2 ["]5=(<”9Vl>= <”9V2>=”'9<”9Vn>)
Il ] v,

« EX : (Representing vectors relative to an orthonormal basis)
Find the coordinates of vector z= (5, -5, 2) relative to the following orthonormal basis

§=1{(5,%,0),(-%,%,0),(0,0, )

Sol: <uv,>=uv, =(5,-52).(3,%4,0=-1 -1
<uv,>=u.v,=(5-52).(-%,2,0=-7 :>[u] —7
<u,vy;>=u.v;=(5-52).(0,0,1)=2 K

https://manara.edu.sy/
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« Theorem : (Projection Theorem)
If Wis a finite-dimensional subspace of an inner product space V, then every vector u

In V'can be expressed in exactly one way as #= w; + w5, where w; is in Wand w; is In

Wt
u = projy u + proj, . u = proj,u + (4 — proj,,u)
WJ_
u .
pProjyLu
0 projy u

https://manara.edu.sy/
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« Theorem : (Projection Theorem)
Let Whe a finite-dimensional subspace of an inner product space V. If S={v;, v, ..., v}
IS an orthogonal/orthonormal basis for W, then

proj,u = Gl Vzl> v, + Gl V22> V, + o + , Vg> v, orthogonal
" ¥ v
proj, u = {u, v;)v, +{u, v,)v, +--- +{u, v.)v. orthonormal

« EX : (Calculating Projections)
Let & have the Euclidean inner product, and let W be the subspace spanned by the
orthonormal vectors v; = (0, 1, 0) and v, = (—4/5, 0, 3/5). The orthogonal projection

of u=(1,1,1) on Wis

https://manara.edu.sy/
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proj, u = (u, v,)v, +{u, v,)v, = (1)(0, 1, 0) + (= 1/5)(—4/5, 0, 3/5) = (4/25, 1, — 3/25)
The component of zorthogonal to Wis
proj . u = u — projyu = (1, 1, 1) — (4/25, 1, — 3/25) = (21/25, 0, 28/25)

« A geometric interpretation of orthogonal projections in A°
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« Theorem : (Projection Theorem) -
Every nonzero finite-dimensional inner product space has an orthonormal basis
Proof (Gram-Schmidt orthonormalization construction)
Let W be any nonzero finite-dimensional subspace of an inner product space, and
suppose that {#, &, ..., &} is any basis for W
Step 1: Let vy = g
(u,, v ) v, =1, - projy, u,
(Vi vy

]/Vl:Span(Vl) and v, L v, v, # 0

Step 2: v, = U, — proj, u, = U, —

https://manara.edu.sy/
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(uy, v,) (uy, vy)
Vi — 2
(Vs V) (Vyy Vy)

W, =span(v;, w)and v, LW,, v, #0

Step 3: V3 = uy — proj,, u; = u; —

Continuing in this way we will produce after r steps
an orthogonal set of nonzero vectors {v;, v, ..., v}

By normalizing these basis vectors we can obtain
an orthonormal basis

« Theorem : (Gram-Schmidt orthonormalization process)
(1) Let B={u, u, ..., u,} s a basis for an inner product space V
(2) Let B' ={v, », ..., v, }, where

https://manara.edu.sy/
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v, = u,
, <u,, v >
<V, Vi >
1> "1
o o <uy,vi> <, v, >
<V, V> <V, ¥, >
n—1
, <u,,v,>
Vo = U, —DPIOjy, U, =, — V;
< V., V. >

Then 7 is an orthogonal basis for V

(3) Let w, = —

i

v

Then B" = {w;, w;, ..., w,} is an orthonormal basis for V'

https://manara.edu.sy/
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Also, span{#,, w,, ..., u} =span{w,, w,, ..., w}for k=1,2,..., n
« EX : (Applying the Gram-Schmidt orthonormalization process)
Apply the Gram-Schmidt orthonormalization process to the basis B for &

ul u2
B= {1, (0,1)}
Sol:
Vlzulz(lal)
<”23V1> 1 11
vV, =u, — VZO,I——I,IZ —
=y =B = (0D =5 D = (-5 5)

The set B = {v;, } is an orthogonal basis for A°
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1 1) = V2 2
w; ”V1H \/5(9 ) ( ) > ) )\/_ \/_
v, _l l _ 2 A2
W2 HVZH 1/\/5( 272) ( 27 2)
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« EX : (Applying the Gram-Schmidt orthonormalization process)
Apply the Gram-Schmidt orthonormalization process to the basis Bfor &

ul ”2 lI3
B= {1,1,0), 1,2,0), (0,1,2)}
Sol:
v =u, =(1,1,0)
< >
v, =U, — “> M Vl=(1,2,0)—§(1,1,0)2(—1,1,0)
<w, V> 2 2 2
< > < >
v, = u, - u,, Vv v, - us,Vv, v,
<V, V> <V, V, >
1 1/2 1 1
=(1,2,00-—(1,1,0)——(——=,—,0)=(0,0,2
( ) 2( ) 1/2( > ) =( )
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The set B ={v;, v, ¥} is an orthogon;::s[ls for &2
T E OGS

" H:H TR (‘\25’\25’

w, = “V“ 5(0 0,2) = (0, 0, 1)

The set B" = {w;, w;, w3} is an orthonormal basis for &
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« EX ! (Applying the Gram-Schmidt orthonormalization process)
Apply the Gram-Schmidt orthonormalization process to the standard basis 5= {1, x, x°}
in £, 1
(P, @ =], P(X)q(x)ax

Sol:
Let 5={1, x, x*} ={u,, &, u;}
v, =u, =1
V2:II2—<”2,VI>V1:X—9(1):X
(Vi %) 2
{u,, v,y {u,, v,) 2/3 1
Vy S lly ——— ¥ — Y, = X 2__()__(X) X' —=

(V> V) (Vy, V) 2/3 3
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by nor-malizing B = {Vl, v, 3}

w, = L (1)—
PR
e PRI [

W = HVH M(XZ__)_ \/7(31‘/2_1)

Legendre Polynomials
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