

Problem sets 5 : Projection

CEDC102: Linear Algebra and Matrix Theory

Manara University

2023-2024

https://manara.edu.sy/

Does there exist a . . . , as in each of (1), (2), (3) below? (If the answer is yes, show such a matrix and explain why it has the required property. If the answer is no, explain why such a matrix doesn't exist).

1. 2 × 3 matrix with column space spanned by
$$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 and left nullspace spanned by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

2. 3× 2 matrix with column space spanned by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and nullspace spanned by $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$?

3. 2 × 2 matrix with column space spanned by
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 and left nullspace spanned by $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$?

- a. If Ax = b has a solution x, then the closest vector to b in N(AT) is ______. (Try drawing a picture.)
- b. If the rows of A (an $m \times n$ matrix) are independent, then the dimension $N(A^T A)$ is _
- c. If a matrix U has orthonormal rows, then $I = _$ and the projection matrix onto the row space of U is _____. (Your answers should be simplified expressions involving U and U^T only.)

In class, we saw that the orthogonal projection p of a vector b onto C(A) is given by $p = A\hat{x}$ where \hat{x} is a solution to the "normal equations" $A^T A \hat{x} = A^T b$. We showed in class that these equations are *always* solvable, because $A^T b \in C(AT) = C(A^T A)$.

a. The least-square solution \hat{x} is unique if A is _____, in which case $A^T A$ is _____.

b. The least-square solution \hat{x} is not unique if A is _____, in which case $A^T A$ is _____. However, the projection $p = A\hat{x}$ is *s*till unique: if you have two solutions \hat{x} and \hat{x} to the normal equations, $A\hat{x} - A\hat{x} =$ _____ because _____.

Suppose we have data (e.g. from some experimental measurement) $b_1, b_2, b_3, \dots, b_{21}$ at the 21 equally spaced times $t = -10, -9, \dots, 9, 10$. All measurements are $b_k = 0$ except that $b_{11} = 1$ at the middle time t = 0

- a. Using least squares, what are the best c and d to fit those 21 points by a straight line c + dt?
- b. You are projecting the vector *b* onto what subspace? (Give a basis).
- c. Find a nonzero vector perpendicular to that subspace.

Suppose \hat{x} is the least squares solution to $Ax \approx b$ (i.e. it minimizes ||Ax - b||) and \hat{y} is the least squares solution to $Ay \approx c$, where A has full column rank. Does this tell you the least squares solution \hat{z} to $Az \approx b + c$? If so, what is \hat{z} and why?

(a) What matrix P projects every vector in \mathbb{R}^3 onto the line that passes through origin and a = [3,4,5] (column vector)?

(b) What is the nullspace of that matrix *P*? (Give a basis.)

(c) What is the row space of P^7 ?

https://manara.edu.sy/

Suppose that vectors $q_1, q_2, ..., q_n$ in \mathbb{R}^m are orthonormal.

a. Let $c_1, c_2, ..., c_n$ be real numbers. What is $||c_1q_1 + c_2q_2, +... + c_nq_n||^2$?

b. Show that q_1, q_2, \dots, q_n are linearly independent.

Let
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$

a. Find Q and R such that A = QR by Gram-Schmidt process on columns of A

b. Let $B = \begin{bmatrix} 0 & -1 & 0 \\ 2 & 2 & 0 \\ 1 & 2 & 3 \end{bmatrix}$, a matrix obtained by exchanging the first two columns of A

Find \hat{Q} and \hat{R} such that $B = \hat{Q}\hat{R}$ by Gram-Schmidt process on columns of B.