Problem sels 5 : Projection

CEDC102: Linear Algebra and Matrix Theory

Manara University

2023-2024

Problem 1

Does there exist a . . . , as in each of (1), (2), (3) below? (If the answer is yes, show such a matrix and explain why it has the required property. If the answer is no, explain why such a matrix doesn't exist).

1. 2×3 matrix with column space spanned by $\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and left nullspace spanned by $\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
2. 3×2 matrix with column space spanned by $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and nullspace spanned by $\left[\begin{array}{c}3 \\ -1\end{array}\right]$?
3.2×2 matrix with column space spanned by $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and left nullspace spanned by $\left[\begin{array}{c}-2 \\ 3\end{array}\right]$?

Problem 2

a. If $A x=b$ has a solution x, then the closest vector to b in $N(A T)$ is \qquad . (Try drawing a picture.)
b. If the rows of A (an $m \times n$ matrix) are independent, then the dimension $N\left(A^{T} A\right)$ is \qquad
c. If a matrix U has orthonormal rows, then $I=$ \qquad and the projection matrix onto the row space of U is
\qquad . (Your answers should be simplified expressions involving U and U^{T} only.)

Problem 3

In class, we saw that the orthogonal projection p of a vector b onto $C(A)$ is given by $p=A \hat{x}$ where \hat{x} is a solution to the "normal equations" $A^{T} A \hat{x}=A^{T} b$. We showed in class that these equations are a/ways solvable, because $A^{T} b \in C(A T)=C\left(A^{T} A\right)$.
a. The least-square solution \hat{x} is unique if A is \qquad in which case $A^{T} A$ is \qquad .
b. The least-square solution \hat{x} is not unique if A is \qquad in which case $A^{T} A$ is \qquad . However, the projection $p=A \hat{x}$ is still unique: if you have two solutions \hat{x} and \hat{x} to the normal equations, $A \hat{x}-A \hat{x}=$ \qquad because \qquad .

Problem 4

Suppose we have data (e.g. from some experimental measurement) $b_{1}, b_{2}, b_{3}, \ldots, b_{21}$ at the 21 equally spaced times $t=-10,-9, \ldots, 9,10$. All measurements are $b_{k}=0$ except that $b_{11}=1$ at the middle time $t=0$
a. Using least squares, what are the best c and d to fit those 21 points by a straight line $c+d t$?
b. You are projecting the vector b onto what subspace? (Give a basis).
c. Find a nonzero vector perpendicular to that subspace.

Problem 5

Suppose \hat{x} is the least squares solution to $A x \approx b$ (i.e. it minimizes $\|A x-b\|$) and \hat{y} is the least squares solution to $A y \approx c$, where A has full column rank. Does this tell you the least squares solution \hat{z} to $A z \approx b+c$? If so, what is \hat{z} and why?

Problem 6
(a) What matrix P projects every vector in \mathbb{R}^{3} onto the line that passes through origin and $a=[3,4,5]$ (column vector)?
(b) What is the nullspace of that matrix P ? (Give a basis.)
(c) What is the row space of P^{7} ?

Problem 7

Suppose that vectors $q_{1}, q_{2}, \ldots, q_{n}$ in \mathbb{R}^{m} are orthonormal.
a. Let $c_{1}, c_{2}, \ldots, c_{n}$ be real numbers. What is $\left\|c_{1} q_{1}+c_{2} q_{2},+\ldots+c_{n} q_{n}\right\|^{2}$?
b. Show that $q_{1}, q_{2}, \ldots, q_{n}$ are linearly independent.

Problem 8
Let $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 1 & 3\end{array}\right]$
a. Find Q and R such that $A=Q R$ by Gram-Schmidt process on columns of A
b. Let $B=\left[\begin{array}{ccc}0 & -1 & 0 \\ 2 & 2 & 0 \\ 1 & 2 & 3\end{array}\right]$, a matrix obtained by exchanging the first two columns of A

Find Q and \dot{R} such that $B=$ Q́ \dot{R} by Gram-Schmidt process on columns of B.

