

MATHEMATICAL ANALAYSIS 1

Lecture

Prepared by Dr. Sami INJROU

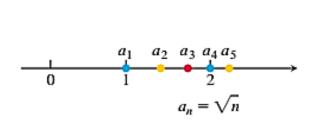
Infinite Sequences and Series

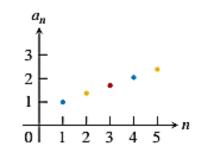
Definition A **sequence** can be thought of as a list of numbers written in a definite order:

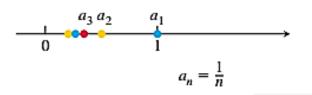
$$a_1,a_2,a_3,a_4,\ldots,a_n,\ldots$$

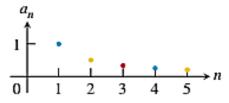
or

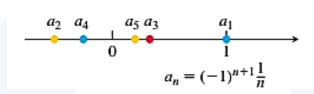
$$a_0, a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

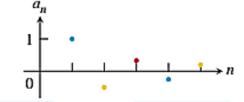












Find a formula for the general term a_n of the sequence for $n \ge 1$:

$$\frac{3}{5}, \frac{-4}{25}, \frac{5}{125}, \frac{-6}{625}, \frac{7}{3125}, \dots$$

Solution

$$a_{1} = \frac{3}{5} \Rightarrow a_{1} = (-1)^{1-1} \frac{1+2}{5^{1}}$$

$$a_{2} = \frac{-4}{25} \Rightarrow a_{2} = (-1)^{2-1} \frac{2+2}{5^{2}}$$

$$a_{3} = \frac{5}{125} \Rightarrow a_{3} = (-1)^{3-1} \frac{3+2}{5^{3}}$$

$$a_{4} = \frac{-6}{625} \Rightarrow a_{4} = (-1)^{4-1} \frac{4+2}{5^{4}}$$

$$a_{5} = \frac{7}{3125} \Rightarrow a_{5} = (-1)^{5-1} \frac{5+2}{5^{5}}$$

$$\Rightarrow a_{1} = (-1)^{n-1} \frac{n+2}{5^{n}}$$

Find a formula for the general term a_n of the sequence:

$$1, \frac{-1}{4}, \frac{1}{9}, \frac{-1}{16}, \frac{1}{25}, \dots$$

Solution

$$a_{0} = 1 \qquad \Rightarrow a_{0} = (-1)^{0} \frac{1}{(1)^{2}}$$

$$a_{1} = \frac{-1}{4} \qquad \Rightarrow a_{1} = (-1)^{1} \frac{1}{(2)^{2}}$$

$$a_{2} = \frac{1}{9} \qquad \Rightarrow a_{2} = (-1)^{2} \frac{1}{(3)^{2}}$$

$$a_{3} = \frac{-1}{16} \qquad \Rightarrow a_{3} = (-1)^{3} \frac{1}{(4)^{2}}$$

$$a_{4} = \frac{1}{25} \qquad \Rightarrow a_{4} = (-1)^{4} \frac{1}{(5)^{2}}$$

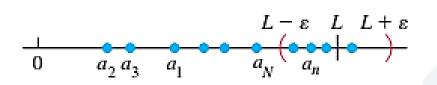
$$\Rightarrow a_n = (-1)^n \frac{1}{(n+1)^2} ; n = 0,1,2,...$$

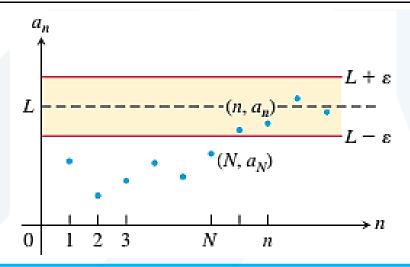
DEFINITIONS The sequence $\{a_n\}$ converges to the number L if for every positive number ε there corresponds an integer N such that

$$|a_n - L| < \varepsilon$$
 whenever $n > N$.

If no such number L exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence (Figure 10.2).



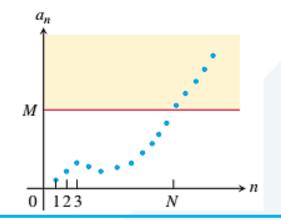


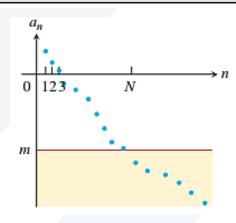
DEFINITION The sequence $\{a_n\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds we write

$$\lim_{n\to\infty} a_n = \infty \qquad \text{or} \qquad a_n \to \infty.$$

Similarly, if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n\to\infty} a_n = -\infty \qquad \text{or} \qquad a_n \to -\infty.$$





Calculating Limits of Sequences

THEOREM 1 Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

1. Sum Rule:
$$\lim_{n\to\infty} (a_n + b_n) = A + B$$

2. Difference Rule:
$$\lim_{n\to\infty} (a_n - b_n) = A - B$$

3. Constant Multiple Rule:
$$\lim_{n\to\infty} (k \cdot b_n) = k \cdot B$$
 (any number k)

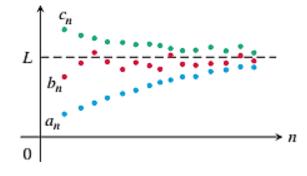
4. Product Rule:
$$\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$$

5. Quotient Rule:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B} \quad \text{if } B \neq 0$$

Calculating Limits of Sequences

THEOREM 2—The Sandwich Theorem for Sequences

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \le b_n \le c_n$ holds for all n beyond some index N, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$ also.



(a)
$$\frac{\cos n}{n} \rightarrow 0$$

$$-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n};$$

$$\mathbf{(b)} \ \ \frac{1}{2^n} \to 0$$

$$0 \le \frac{1}{2^n} \le \frac{1}{n};$$

(c)
$$(-1)^n \frac{1}{n} \rightarrow 0$$

$$-\frac{1}{n} \le (-1)^n \frac{1}{n} \le \frac{1}{n}.$$

(d) If
$$|a_n| \to 0$$
, then $a_n \to 0$ $-|a_n| \le a_n \le |a_n|$.

Calculating Limits of Sequences

THEOREM 3—The Continuous Function Theorem for Sequences

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \rightarrow f(L)$.

EXAMPLE 5

Show that $\sqrt{(n+1)/n} \to 1$. $f(x) = \sqrt{x}$ and L = 1

Using L'Hôpital's Rule

THEOREM 4 Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{n \to \infty} a_n = L \quad \text{whenever} \quad \lim_{x \to \infty} f(x) = L.$$

EXAMPLE 8 Does the sequence whose *n*th term is

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

converge? If so, find $\lim_{n\to\infty} a_n$.

$$\ln a_n = \ln \left(\frac{n+1}{n-1}\right)^n = n \ln \left(\frac{n+1}{n-1}\right).$$

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n-1}\right) \qquad \infty \cdot 0 \text{ form}$$

$$= \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n-1}\right)}{1/n} \qquad \frac{0}{0} \text{ form}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2-1)}{-1/n^2} \qquad = \lim_{n \to \infty} \frac{2n^2}{n^2-1} = 2.$$

The sequence $\{a_n\}$ converges to e^2 .

THEOREM 5 The following six sequences converge to the limits listed below:

$$1. \lim_{n \to \infty} \frac{\ln n}{n} = 0$$

$$2. \lim_{n\to\infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1$$
 $(x > 0)$

2.
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

4. $\lim_{n \to \infty} x^n = 0$ ($|x| < 1$)

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$
 (any x) 6. $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ (any x)

$$6. \lim_{n \to \infty} \frac{x^n}{n!} = 0 \qquad \text{(any } x\text{)}$$

In Formulas (3) through (6), x remains fixed as $n \to \infty$.

DEFINITIONS A sequence $\{a_n\}$ is **nondecreasing** if $a_n \le a_{n+1}$ for all n. That is, $a_1 \le a_2 \le a_3 \le \dots$ The sequence is **nonincreasing** if $a_n \ge a_{n+1}$ for all n. The sequence $\{a_n\}$ is **monotonic** if it is either nondecreasing or nonincreasing.

THEOREM 6—The Monotonic Sequence Theorem

If a sequence $\{a_n\}$ is both bounded and monotonic, then the sequence converges.

find a formula for the nth term of the sequence.

$$\frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \frac{17}{120}, \dots \qquad -\frac{3}{2}, -\frac{1}{6}, \frac{1}{12}, \frac{3}{20}, \frac{5}{30}, \dots$$

$$a_n = \frac{3n+2}{n!}, \quad n = 1, 2, \dots$$

$$a_n = \frac{2n-5}{n(n+1)}, \quad n = 1, 2, \dots$$

Which of the sequences $\{a_n\}$ in Exercises 31–100 converge, and which diverge? Find the limit of each convergent sequence.

$$a_n = \frac{3^n}{n^3}$$
 $a_n = (n+4)^{1/(n+4)}$ $a_n = \left(\frac{1}{n}\right)^{1/(\ln n)}$ $\left(\frac{3n+1}{3n-1}\right)^n$ $\left(3^n+5^n\right)^{1/n}$

In Exercises 101–108, assume that each sequence converges and find its limit.

$$a_1 = 2$$
, $a_{n+1} = \frac{72}{1 + a_n}$

$$2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}}, 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \dots$$

$$1 + \sqrt{2}$$

Infinite Series

DEFINITIONS Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

is an **infinite series**. The number a_n is the **nth term** of the series. The sequence $\{s_n\}$ defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$
 \vdots

is the sequence of partial sums of the series, the number s_n being the *n*th partial sum. If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L. In this case, we also write

$$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = L.$$

If the sequence of partial sums of the series does not converge, we say that the series **diverges**.

EXAMPLE 5 Find the sum of the "telescoping" series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

$$s_{k} = \sum_{n=1}^{k} \frac{1}{n(n+1)}$$

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$$

$$\sum_{n=1}^{k} \frac{1}{n(n+1)} = \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$s_{k} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right).$$

$$s_k = 1 - \frac{1}{k+1}$$
. $\Longrightarrow \lim_{k \to \infty} s_k = 1$ $\Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

Geometric Series

If |r| < 1, the geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ converges to a/(1-r):

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \qquad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

$$s_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$rs_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

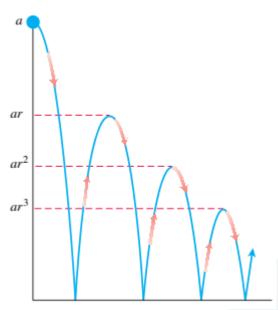
$$s_n - rs_n = a - ar^n$$

$$s_n = \frac{a(1 - r^n)}{1 - r}, \quad (r \neq 1).$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

 $\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$ is a geometric series with a = 5 and r = -1/4. It converges to $\frac{a}{1-r} = \frac{5}{1+(1/4)} = 4$.

You drop a ball from a meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the total distance the ball travels up and down (Figure 10.10).



$$s = a + 2ar + 2ar^2 + 2ar^3 + \cdots$$

This sum is
$$2ar/(1-r)$$
.

$$= a + \frac{2ar}{1-r} = a\frac{1+r}{1-r}.$$

If
$$a = 6 \text{ m}$$
 and $r = 2/3$.

$$s = 6 \cdot \frac{1 + (2/3)}{1 - (2/3)} = 6\left(\frac{5/3}{1/3}\right) = 30 \text{ m}.$$

EXAMPLE 4 Express the repeating decimal 5.232323 . . . as the ratio of two integers.

$$5.232323... = 5 + \frac{23}{100} + \frac{23}{(100)^2} + \frac{23}{(100)^3} + \cdots$$

$$= 5 + \frac{23}{100} \left(1 + \frac{1}{100} + \left(\frac{1}{100} \right)^2 + \cdots \right)$$

$$= 5 + \frac{23}{100} \left(\frac{1}{0.99} \right) = 5 + \frac{23}{99} = \frac{518}{99}$$

The *n*th-Term Test for a Divergent Series

THEOREM 7 If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $a_n \to 0$.

The nth-Term Test for Divergence

 $\sum_{n=1}^{\infty} a_n \text{ diverges if } \lim_{n \to \infty} a_n \text{ fails to exist or is different from zero.}$

- (a) $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \to \infty$. (d) $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ diverges because $\lim_{n\to\infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$.
 - (b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \to 1$.
- (c) $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist.

Combining Series

THEOREM 8 If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then

$$\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$$

$$\sum (a_n - b_n) = \sum a_n - \sum b_n = A - B$$

3. Constant Multiple Rule:
$$\sum ka_n = k\sum a_n = kA$$
 (any number k).

- 1. Every nonzero constant multiple of a divergent series diverges.
- 2. If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ both diverge.

Caution Remember that $\sum (a_n + b_n)$ can converge even if both $\sum a_n$ and $\sum b_n$ diverge. For example, $\sum a_n = 1 + 1 + 1 + \cdots$ and $\sum b_n = (-1) + (-1) + (-1) + \cdots$ diverge, whereas $\sum (a_n + b_n) = 0 + 0 + 0 + \cdots$ converges to 0.

EXAMPLE 9 Find the sums of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$$
 (b) $\sum_{n=0}^{\infty} \frac{4}{2^n}$

(a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \frac{4}{5}$$

(b)
$$\sum_{n=0}^{\infty} \frac{4}{2^n} = 8$$

In Exercises 1–6, find a formula for the *n*th partial sum of each series and use it to find the series' sum if the series converges.

$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \cdots + \frac{2}{3^{n-1}} + \cdots$$

$$\frac{2\left(1-\left(\frac{1}{3}\right)^n\right)}{1-\left(\frac{1}{3}\right)}$$

$$\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{(n+1)(n+2)} + \dots$$

$$\frac{1}{2} - \frac{1}{n+2}$$

Express each of the numbers in Exercises 23–30 as the ratio of two integers.

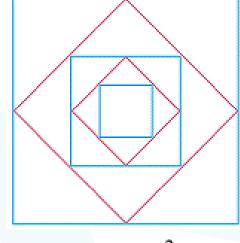
$$0.\overline{234} = 0.234\ 234\ 234\ \dots$$

Find the sum of each series

$$\sum_{n=1}^{\infty} \left(\frac{1}{\ln(n+2)} - \frac{1}{\ln(n+1)} \right) \qquad \sum_{n=1}^{\infty} (\tan^{-1}(n) - \tan^{-1}(n+1))$$

$$-\frac{1}{\ln 2}$$

The accompanying figure shows the first five of a sequence of squares. The outermost square has an area of 4 m². Each of the other squares is obtained by joining the midpoints of the sides of the squares before it. Find the sum of the areas of all the squares.



 $8 m^2$

The Integral Test

THEOREM 9—The Integral Test

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) \, dx$ both converge or both diverge.

EXAMPLE 3 Show that the *p*-series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

(p a real constant) converges if p > 1, and diverges if $p \le 1$.

The Integral
$$\int_{1}^{\infty} \frac{dx}{x^{p}}$$

the improper integral converges if p >1 and diverges if $p \le 1$

EXAMPLE 5

Determine the convergence or divergence of the series.

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

$$\mathbf{(b)} \quad \sum_{n=1}^{\infty} \frac{1}{2^{\ln n}}$$

converges

diverges

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
 $\int_{1}^{\infty} \frac{x}{e^{x^2}} dx = \frac{1}{2e}$.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2^{\ln n}}$$

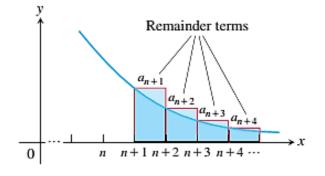
$$\int_{1}^{\infty} \frac{dx}{2^{\ln x}} = \int_{0}^{\infty} \left(\frac{e}{2}\right)^{u} du$$

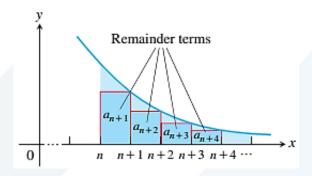
$$= \lim_{b \to \infty} \frac{1}{\ln\left(\frac{e}{2}\right)} \left(\left(\frac{e}{2}\right)^b - 1 \right) = \infty.$$

Bounds for the Remainder in the Integral Test

Suppose $\{a_k\}$ is a sequence of positive terms with $a_k = f(k)$, where f is a continuous positive decreasing function of x for all $x \ge n$, and that $\sum a_n$ converges to S. Then the remainder $R_n = S - s_n$ satisfies the inequalities

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx. \tag{1}$$





$$R_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots \ge \int_{n+1}^{\infty} f(x) \, dx. \quad R_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots \le \int_{n}^{\infty} f(x) \, dx.$$

$$s_n + \int_{n+1}^{\infty} f(x) dx \le S \le s_n + \int_{n}^{\infty} f(x) dx$$
 (2)

EXAMPLE 6 Estimate the sum of the series $\Sigma(1/n^2)$ using the inequalities in (2) and n = 10.

$$\int_{n}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{n}^{b} = \lim_{b \to \infty} \left(-\frac{1}{b} + \frac{1}{n} \right) = \frac{1}{n}.$$

$$s_{10} + \frac{1}{11} \le S \le s_{10} + \frac{1}{10}.$$

$$s_{10} = 1 + (1/4) + (1/9) + (1/16) + \dots + (1/100) \approx 1.54977,$$

$$1.64068 \le S \le 1.64977.$$

If we approximate the sum S by the midpoint of this interval, we find that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \approx 1.6452.$$

Applying the Integral Test

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

$$\sum_{n=1}^{\infty} \frac{n^2}{e^{n/3}}$$

Estimate the value of $\sum_{n=1}^{\infty} (1/n^3)$ to within 0.01 of its exact value.

Comparison Tests

THEOREM 10—Direct Comparison Test

Let $\sum a_n$ and $\sum b_n$ be two series with $0 \le a_n \le b_n$ for all n. Then

- 1. If $\sum b_n$ converges, then $\sum a_n$ also converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ also diverges.

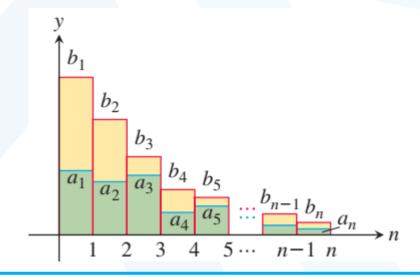
$$\sum_{n=1}^{\infty} \frac{5}{5n-1}$$

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

diverges

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$1 + \sum_{n=0}^{\infty} \frac{1}{2^n}$$



The Limit Comparison Test

THEOREM 11—Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

$$\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$$

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$$
 converges

$$\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \qquad \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n} \text{ converges} \qquad \sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n} \text{ diverges}$$

EXAMPLE 3 Does $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ converge?

$$\frac{\ln n}{n^{3/2}} < \frac{n^{1/4}}{n^{3/2}} = \frac{1}{n^{5/4}}$$

Then taking $a_n = (\ln n)/n^{3/2}$ and $b_n = 1/n^{5/4}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n^{1/4}} = \lim_{n \to \infty} \frac{1/n}{(1/4)n^{-3/4}} = \lim_{n \to \infty} \frac{4}{n^{1/4}} = 0.$$

convergent

In Exercises 1–8, use the Direct Comparison Test to determine if each series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^{3/2}}$$

$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^{3/2}} \qquad \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{\sqrt{n^2+3}}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \qquad \frac{\sqrt{n+1}}{\sqrt{n^2+3}} \ge \frac{1}{\sqrt{n}}$$

In Exercises 9–16, use the Limit Comparison Test to determine if each series converges or diverges.

$$\sum_{n=2}^{\infty} \frac{n(n+1)}{(n^2+1)(n-1)} \qquad \sum_{n=1}^{\infty} \frac{2^n}{3+4^n} \qquad \sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} \, 4^n} \qquad \sum_{n=1}^{\infty} \left(\frac{2n+3}{5n+4}\right)^n$$

$$\sum_{n=2}^{\infty} \frac{1}{n} \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \qquad \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$$

$$\sum_{n=1}^{\infty} \frac{2^n}{3+4^n}$$

$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} \, 4^n}$$

$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{5n+4} \right)^n$$

$$\sum_{n=2}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$$