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Infinite Sequences and Series
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Definition A sequence can be thought of as a list of numbers written in a definite order:
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Find a formula for the general term a, of the sequence for n >1:

345 -6 7
5'25'125'625 3125

Solution
aﬁg = alz(—l)l_llgl2 \
az=;—g = a, =( 1)2_12;22
L
4=6_—265 = a, =( 1)4_14;2
as_ﬁ = a, =( 1)5_15;52 )
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Find a formula for the general term a_ of the sequence:
“t1-11
"4 9716 25°
Solution
a, =1 :aoz(—l)oé )
-1
Q=" ooa-(D
. (2) 1
_ 1 —(=1)" ‘N =
== = a=(-1) ., = a =(-1)—— ; n=012 ...
29 2 (3)? " (n+1)°
-1 3 1
=— — (-1
% T AUy
1 s 1
=— = a,=(-1 y
4 25 4 (5)2
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DEFINITIONS The sequence {a,} converges to the number L if for every
positive number & there corresponds an integer &V such that

|la, — L| <&  whenever 1 > N.

If no such number L exists, we say that {a,} diverges.
If {a,} converges to L, we write lim,,_,_a,, = L, orsimply a, — L, and call
L the limit of the sequence (Figure 10.2).

L—-g L L+eg |
a—o—o—o—fo—n{—'—;]— L+
“.3_5:3 Iy @y~ dy P e i (n ﬂ“]___=___s
s " I —
. . (N, ay) )
I |‘ : L1 - 1l
(0 1 2 3 N n
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DEFINITION The sequence {a,} diverges to infinity if for every number M
there is an integer N such that for all » larger than N, a, > M. If this condition

holds we write

lim a, = oo

=k

or a, — 00.

Similarly, if for every number 1 there is an integer N such that forall 1 = N we
have &, < m, then we say {a,} diverges to negative infinity and write

lim a, = —oo or €, —> —00.
==
oy iy
4 T
rTi ] > 1
- 0f123, N
5 L ]
M > °
L
o m -
L ] Ll N
_' LI . * .
111 L . G
0| 123 N
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Calculating Limits of Sequences

THEOREM 1

LN I

Sum Rule:

Difference Rule:
Constant Multiple Rule:
Product Rule:

Quotient Rile:

Let {a,} and {b,} besequences of real numbers, and let A and B
be real numbers. The following rules hold if lim,,_, a, = A and lim,,_, b, = B.

1.

lim, .. (@, +b)=A+ B

lim, ... (a, — b)=A—B

lim, ., (k-b,) = k-8B (any number &)
lim, .. (a,*b,) =A-B

il
n_A g pag

hmu—m-:-b_n - B

https://manara.edu.sy/




[

Calculating Limits of Sequences — 9%

THEOREM 2—The Sandwich Theorem for Sequences

Let {a,}, {b,}, and {e,} be sequences of real numbers. If a, = b, = ¢,
holds for all # beyond some index N, and if lim,_,_a, = lim,_,_¢c, = L, then
lim, ., b = L also.

LiF-=5ts—s ot oossai-
e COS 1n ] COS 1 ]
. . (3} T — [} 3 = n = E;
L l
: (B) 5. =0 0=+ = L.
2?! n:»
1 ] 1 1
(¢) —1)'z—0 —= = (1) = g

(d) If |a,| — 0, then a, -0 —l|a,| = a, = |a,|.
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Calculating Limits of Sequences

THEOREM 3—The Continuous Function Theorem for Sequences
Let {a,} be a sequence of real numbers. If a4, — L and if f is a function that is
continuous at L and defined at all a,, then f(a,) — f(L).

EXAMPLE 5  Show that V(n + 1)/n— 1. f(x) = vxand L = 1

Using L'Ho6pital’'s Rule

THEOREM 4 Suppose that f(x) is a function defined for all x = n, and that
{a,} is a sequence of real numbers such that a, = f(in) for 1 = ny. Then

lim a, = L whenever lim f(x) = L.

== X=eD
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EXAMPLE 8 Does the sequence whose nth term is
(.-1 + 1)”
ﬂ?! =
n—1
converge? If so, find lim,,_,a,.
n+ 1LY n+ 1
Ina, = In =nln .
n—1 n—1
. ) n+ 1 )
lim Ina, = lim nln 1 oo~ 0 form
M + 1
‘ n—1
= H]LH;U l‘,fn, ﬁj'mm
. =2/ — 1) . n”
= lim . = lim — = 2.
B30 —lfﬂ" n—sco i — |

a3
The sequence {a,} converges to e

https://manara.edu.sy/
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THEOREM 5 The following six sequences converge to the limits listed below:

1. lim B2 =g 2. lim Vi = 1

3 limxt"=1 (x>0 4. limx*=0 (|x] <D
: x\" .oox"

5. HILII:D (l + H) = ¢" (any x) 6. HILII:D i 0 (any x)

In Formulas (3) through (6), x remains fixed as n — oo.

DEFINITIONS A sequence {a,} is nondecreasing if «, = a,_,, for all n. That
18, 4 = a; = az = . ... The sequence is nonincreasing if a, = a,,, for all n.
The sequence {a,} is monotonic if it is either nondecreasing or nonincreasing.

THEOREM 6—The Monotonic Sequence Theorem
If a sequence {a,} is both bounded and monotonic, then the sequence converges.

https://manara.edu.sy/
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Exercises
find a formula for the nth term of the sequence.
5811 14 17 3 11 3 5
127 672471207 " 27 671272073077
ﬂﬂzﬁﬁ H'=1,.2,.-- 'ﬂln =ﬁ, H=1,2,...

n!

Which of the sequences {a,} in Exercises 31-100 converge, and
which diverge? Find the limit of each convergent sequence.

n 1 £l
ay = 3_1 a, = (n + 4)H/n+d) a = (l) i (3ra+l]”

i3 " H 31—l

a0 1 e} EEI.G

(3" +5"]

1/n
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In Exercises 101-108, assume that each sequence converges and find

Exercises
its limit.
T2
.ﬂl:E,‘ ﬂ-'1+l=1+.ﬂ
£l

8

[
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12+%1+ lr
E'+r::+

1+~.,I"§

2+

2+

2+

bl | =

https://manara.edu.sy/

13



>y

Infinite Series &)liall

DEFINITIONS Given a sequence of numbers {a,}, an expression of the form
ay +ar +ay3+ - +ta, + -
i5 an infinite series. The number a, is the nth term of the series. The sequence
{s,} defined by
5 =4

51=ﬂ'1+ﬂ2

IT
s, =ap +a, +--- +a, = Eak
k=1

is the sequence of partial sums of the series, the number s, being the nth
partial sum. If the sequence of partial sums converges to a limit L, we say that
the series converges and that its sum is L. In this case, we also write

L]
ayt+ta+--+a, +---= 2&‘,,=L‘
n=1
If the sequence of partial sums of the series does not converge, we say that the
series diverges.

https://manara.edu.sy/
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EXAMPLE 5 Find the sum of the “telescoping” series 2
n=1

K 1
> :Zn(n +1)

n=1
1 1 1

nn+1) n n+ 1

Kk k

1 _ 1 1
2:1{}1 + 1) E (n n+ l)

nm=1 n=1

-(i8) (F8) Boh) (-

Sﬁ._
1 T S 1
% : k+ 1 — I!I—II]oSk 1‘ ,.g]”{” + 1) = |

1
nln + 1)

)

https://manara.edu.sy/
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Geometric Series
If |r| < 1, the geometric series a + ar + ar” + --- + ar"! + - - - converges
toaf(l — r)
Sart = || <L
n=1 - r
If |r| = 1, the series diverges.
s,=a+ar+arr+ - +arr! _
rs,=ar+ar + - +ar" ! + ar"

—_ = — fI
s, — rs, =a —

_a(l — )

W T =

(r # 1).

https://manara.edu.sy/
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EXAMPLE 2 The series

deoln
ojligJi
(] _1)?! 5 55.,.“,..:..5
= — - —_—— — s
2 1716
a = a - ﬂ 5
is a geometric series with ¢ = 5 and r = —1/4. It converges to =

= r 1+ /4
EXAMPLE 3 You drop a ball from a meters above a flat surface. Each time the ball

hits the surface after falling a distance /i, it rebounds a distance rfi, where r 1s positive but
less than 1. Find the total distance the ball travels up and down (Figure 10.10).

”\ . s =a + 2ar + 2ar® + 2ar + - - -

This sum is 2ar/({1 — r).

2ar _ 1+ r

AT T

ar

"
ar-

Ifa=6mandr=2/3

ar-

? l‘”‘ 1 +
-~ o S - (2/3) _ (5}3) B
.i & : ‘. .“.QQ § = ﬁ ] _ [Elf?l} = ﬁ ]}{3 - 3[} ITl.
. m‘: .d.

https://manara.edu.sy/
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EXAMPLE 4 Express the repeating decimal 5.232323 _ ..

5.232323 ...

23

=5 % 100

Y
=3 % 100

_ .2

23

23

as the ratio of two integers.

" (100)* " (100)* "

l 2
m) +)

1
(l+m+

(

1/(1 — 0.01)

100

| S
([}.99) =0

23 _ 518

99 — 99

https://manara.edu.sy/
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The nth-Term Test for a Divergent Series

THEOREM 7 1If E a, converges, then a, — 0.
n=1

The nth-Term Test for Divergence

E a, diverges if lim a,, fails to exist or is different from zero.

=1 Fl =0

= =)
-1 1

TFog F
(a) Hz'; n- diverges because n~ — oo. (d) E En dwerge:s because lim,,_,., M E 5= 7 #= (.
(b) 2 L + l diverges because L ;'; I — 1.
m=1
[ u]
(€ > (—1)y"*! diverges because lim,_,.(—1)"*' does not exist.
n=1

https://manara.edu.sy/ =
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Combining Series

THEOREM 8 If Xa, = A and X b, = B are convergent series, then

1. Sum Rule: 2(a, +b)=2a + b =A+ B
2. Difference Rule: >la, — b)=Xa, — 2b=A —B
3. Constant Multiple Rule: >ka, = kXa, = kA (any number £).

1. Every nonzero constant multiple of a divergent series diverges.

2. If Xa, converges and X b, diverges, then X(a, + b,) and X (a, — b,) both
diverge.

Caution Remember that > (a, + b,) can converge even if both Xa, and X b, diverge.
For example, Xa, =1+ 1+1+--- and 2b =(-1)+ (1) + (1) + --- di-

verge, whereas X(a, + b,) =0 + 0 + 0 + - - - converges to 0.

https://manara.edu.sy/
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EXAMPLE 9 Find the sums of the following series.

@ St X5

n=1 n={0

-l _ 4
(a) 23 1 _ :

n=1

b > o

n=i0

https://manara.edu.sy/
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Exercises 8)liall
In Exercises 1-6, find a formula for the nth partial sum of each series
and use it to find the series’ sum if the series converges.

2 2.2 2

R R R ARE =k

’ [HM

3["(3!] ;

1

1-(3)
1 1 1 1
stz tis Tt o ta T omen T

b | —
g

+

e

ok | o=t

https://manara.edu.sy/
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Exercises 8)lial
Express each of the numbers in Exercises 23-30 as the ratio of two
Integers.

0.234 = 0.234 234 234 | ..

234
999

Find the sum of each series

oo 1 1 00 . B B
2 (In(n ¥2) @+ 1;.) 2, (tan™ () — tan”(n + 1))
- _x
In 2 4

https://manara.edu.sy/
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Exercises

The accompanying figure shows the first five of a sequence of

squares. The outermost square has an area of 4 m?. Each of the A
other squares 1s obtained by joining the midpoints of the sides

of the squares before it. Find the sum of the areas of all the
squares.

8 m

https://manara.edu.sy/ 2
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The Integral Test §)Liall

THEOREM 9—The Integral Test
Let {a,} be a sequence of positive terms. Suppose that a, = f(i1), where f isa
continuous, positive, decreasing function of x for all x = N (N a positive inte-

ger). Then the series S va, and the integral _,r ;,D f(x) dx both converge or both
diverge.

EXAMPLE 3 Show that the p-series

_ 1 1 1 1
EH_F_F_FE_FE_F_F... _|_H_F_|_...

(p a real constant) converges if p > 1, and divergesif p = 1.

0

dx
The l”tEQfﬂljl ) the improper integral converges if p >1 and

diverges if P =1

https://manara.edu.sy/

25



[

6)liaJl

EXAMPLE 5 Determine the convergence or divergence of the series.

o0 . o ]_
(ﬂ] EHE_H I'r:h] E E]nn
n=1 n=1
converges diverges
(s n B o0 ]_
(a) e " f L= — .

https://manara.edu.sy/
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Bounds for the Remainder in the Integral Test

Suppose {a,} is a sequence of positive terms with a, = f(k), where f is a con-
tinuous positive decreasing function of x for all x = n, and that X a, converges
to S. Then the remainder R, = § — s, satisfies the inequalities

/ f(x)de = R, E/ f(x) dx. (1)
n+1 n

T Remainder terms !
JII\ Remainder terms
i \ //
dyyy |
'"n-lll-ll \
-""'\-\..___‘_\_"ﬂ‘.'] aﬂ+|l u}l'l'] I
Hﬂ
I | | .\_—‘i"‘:f__ kS . i 23 iy ] X
0 n n+la+2n+3In+d--- 1] n n+lan+2n+3 n+d--
oo o
Rn = dpy + 2 + gtz T 77 = f{.l'} dx. Rn =y + [ ] + (43 + - Ef _f(x) elx.
n+1 "

https://manara.edu.sy/
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o -I-f f(x)de = 8§ = 5, +f flx) dx (2)
n+1 n

EXAMPLE & Estimate the sum of the series (1 /#) using the inequalities in (2) and

n = 10.
B b
Ldx = lim {—%] = lim (—% + %) =1

i - b =0 - b =0

1 . |
.'i“m+ﬁ5.55.‘i“m+ﬁ.

sip =1+ (1/4) + (1/9 + (1/16) + --- + (1/100) = 1.54977,
1.64068 = § = 1.64977.

If we approximate the sum § by the midpoint of this interval, we find that

S L~ 16452,

n=11"

https://manara.edu.sy/
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Exercises
Applying the Integral Test
S 1 S
,;1 n(In n)? E ..5:".1"3

Estimate the value of 3 ., (1/r') to within 0.01 of its exact
value.

1.195

https://manara.edu.sy/
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Comparison Tests it

THEOREM 10— Direct Comparison Test
Let Xa, and Xb,_ be two series with 0 = a, = b_for all n. Then

1. If > b, converges, then X a, also converges.
2. If Xa, diverges, then 25 also diverges.

s 5 oc
; 5n — 1 é,n_T
diverges converges
o0 i 1
n=1 I ; 2"

.

https://manara.edu.sy/
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The Limit Comparison Test cuu_aJl

THEOREM 11 —Limit Comparison Test
Suppose that ¢, > 0 and b, = 0 for all n = N (N an integer).

iy, :
1. If lim — = cand ¢ == (, then Xa, and Xb, both converge or both diverge.

ﬂ—wmﬁh

iy
2. If lim -— = 0 and X5, converges, then *a, converges.

=00 -E’n

3. If lim E—" = oo and 2 b, diverges, then > a, diverges.

I =]

h.'l-

o 2n + | = 1 +nlnn
E{n+1}3 E 2

n=2 M- T J

- - o o0 ]. )
Ebﬂ = Ell dwcrgc:; 21’,! = ZT converges Ebn = Z,E u:lwcrgcs

u—l n=>2

https://manara.edu.sy/ =L
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EXAMPLE 3 Does E h;'l: converge?
n=1 '
Inn _ '/t 1

R o =

Then taking a, = (Inn)/i’? and b, = 1/,

lim & = i M o " o
=0 bﬂ' il =00 n_lfu =0 I::l}l"-‘-'l-}j'r_ij =00 ﬂl"u'

convergent

https://manara.edu.sy/
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Exercises

In Exercises 1-8, use the Direct Comparison Test to determine if each
series converges or diverges.

2

— COS™ I i *u’_ +1 EL Ju4l
2 HJ"IIE =] VI n—l"lr; n>+3

n=|

In Exercises 9-16, use the Limit Comparison Test to determine if each

series converges or diverges.
i 2n + 31\"
“\5n + 4

> (3

i

(i + Dn— 1) =

]
| —
[1=
M|~

Il MS
G-
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